A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling. | LitMetric

Predicting biochar properties and pyrolysis life-cycle inventories with compositional modeling.

Bioresour Technol

Department of Civil and Environmental Engineering, University of California, Davis, United States.

Published: May 2024

Biochar, formed through slow pyrolysis of biomass, has garnered attention as a pathway to bind atmospheric carbon in products. However, life cycle assessment data for biomass pyrolysis have limitations in data quality, particularly for novel processes. Here, a compositional, predictive model of slow pyrolysis is developed, with a focus on CO fluxes and energy products, reflecting mass-weighted cellulose, hemicellulose, and lignin pyrolysis products for a given pyrolysis temperature. This model accurately predicts biochar yields and composition within 5 % of experimental values but shows broader distributions for bio-oil and syngas (typically within 20 %). This model is demonstrated on common feedstocks to quantify biochar yield, energy, and CO emissions as a function of temperature and produce key life cycle inventory flows (e.g., 0.73 kg CO2/kg poplar biochar bound carbon at 500 °C). This model can be adapted to any lignocellulosic biomass to inform development of pyrolysis processes that maximize carbon sequestration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.130551DOI Listing

Publication Analysis

Top Keywords

slow pyrolysis
8
life cycle
8
pyrolysis
7
predicting biochar
4
biochar properties
4
properties pyrolysis
4
pyrolysis life-cycle
4
life-cycle inventories
4
inventories compositional
4
compositional modeling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!