Clostridioides difficile, a gram-positive anaerobic bacterium, is one of the most frequent causes of nosocomial infections. C. difficile infection (CDI) results in almost a half a million infections and approximately 30,000 deaths in the U.S. each year. Broad-spectrum antibacterial use is a strong risk factor for development of recurring CDI. There is a critical need for narrow-spectrum antibacterials with activity limited to C. difficile. The C. difficile enoyl-acyl carrier protein (ACP) reductase II enzyme (CdFabK), an essential and rate-limiting enzyme in the organism's fatty acid biosynthesis pathway (FAS-2), is an attractive target for narrow-spectrum CDI therapeutics as it is not present in many of the non-pathogenic gut organisms. We have previously characterized inhibitors of the CdFabK enzyme with narrow-spectrum anti-difficile activity and favorable in vivo efficacy, ADME, and low dysbiosis. To expand our knowledge of the structural requirements for CdFabK inhibition, we seek to identify new inhibitors with novel chemical scaffolds. Herein we present the optimization of a thermo-FMN biophysical assay based on the principles of differential scanning fluorimetry, or thermal shift, which leverages the fluorescence signal of the FabK enzyme's FMN prosthetic group. The optimized assay was validated by pilot testing a 10K diversity-based chemical library and novel scaffold hit compounds were identified and biochemically characterized. Additionally, we show that the thermo-FMN assay can be used to determine the thermodynamic dissociation constant, Kd, of CdFabK inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2024.149740 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!