Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Road traffic deaths are increasing globally, and preventable driving behaviours are a significant cause of these deaths. In-vehicle telematics has been seen as technology that can improve driving behaviour. The technology has been adopted by many insurance companies to track the behaviours of their consumers. This systematic review presents a summary of the ways that in-vehicle telematics has been modelled and analysed.
Methodology: Electronic searches were conducted on Scopus and Web of Science. Studies were only included if they had a sample size of 10 or more participants, collected their data over at least multiple days, and were published during or after 2010. 45 relevant papers were included in the review. 27 of these articles received a rating of "good" in the quality assessment.
Results: We found a divide in the literature regarding the use of in-vehicle telematics. Some articles were interested in the utility of in-vehicle telematics for insurance purposes, while others were interested in determining the influence that in-vehicle telematics has on driving behaviour. Machine learning analyses were the most common forms of analysis seen throughout the review, being especially common in articles with insurance-based outcomes. Acceleration, braking, and speed were the most common variables identified in the review.
Conclusion: We recommend that future studies provide the demographical information of their sample so that the influence of in-vehicle telematics on the driving behaviours of different groups can be understood. It is also recommended that future studies use multi-level models to account for the hierarchical structure of the telematics data. This hierarchical structure refers to the individual trips for each driver.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2024.107519 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!