Phthalocyanines have been described as effective photosensitizers for photodynamic therapy and are therefore, being studied for their biomedical applications. The metalation of photosensitizers can improve their photodynamic therapy potential. Here, we focus on the biological properties of [1,4-Bis(3,6,9,12-Tetraoxatridec-1-yloxy)phthalocyaninato]zinc(II) (ZnPc(αEG)) and demonstrate its exceptional anticancer activity upon light stimulation to kill preferentially cancer cells with a start of efficiency at 10 pM. Indeed, in this work we highlighted the high selectivity of ZnPc(αEG) for cancer cells compared with healthy ones and we establish its mechanism of action, enabling us to conclude that ZnPc(αEG) could be a powerful tool for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2024.112863DOI Listing

Publication Analysis

Top Keywords

exceptional anticancer
8
properties [14-bis36912-tetraoxatridec-1-yloxyphthalocyaninato]zincii
8
photodynamic therapy
8
cancer cells
8
anticancer photodynamic
4
photodynamic properties
4
[14-bis36912-tetraoxatridec-1-yloxyphthalocyaninato]zincii phthalocyanines
4
phthalocyanines described
4
described effective
4
effective photosensitizers
4

Similar Publications

Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Phyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents.

View Article and Find Full Text PDF

The intervention of B. longum metabolites in Fnevs' carcinogenic capacity: A potential double-edged sword.

Exp Cell Res

January 2025

Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China. Electronic address:

Colorectal cancer (CRC) ranks among the most prevalent malignant tumors globally. Fusobacterium nucleatum and its metabolites are effective biological targets for colon cancer promotion. Probiotics such as Bifidobacterium can block the occurrence and development of CRC by regulating the host intestinal mucosal immunity, eliminating carcinogens, and interfering with tumor cell proliferation and apoptosis.

View Article and Find Full Text PDF

Globally, breast cancer continues to be the leading type of cancer affecting women, with rising mortality rates projected by 2030. This highlights the importance of developing new, affordable treatments, like drug delivery systems that use nanoparticles. Gold nanoparticles (AuNPs), including their exceptional optical and physical attributes, make them an attractive vehicle for targeted treatment, allowing for accurate and focused delivery of medication directly to cancerous cells while reducing harmful side effect.

View Article and Find Full Text PDF

Throughout history, medicinal plants have played a significant role in various traditional medical systems. This review article focusses on therapeutic properties of , and . These plants have earned recognition for their curative, medical, life-sustaining and chemical uses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!