Dielectric barrier discharge plasma promotes disinfection-residual-bacteria inactivation via electric field and reactive species.

Water Res

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing, 400045, China. Electronic address:

Published: May 2024

Traditional disinfection processes face significant challenges such as health and ecological risks associated with disinfection-residual-bacteria due to their single mechanism of action. Development of new disinfection processes with composite mechanisms is therefore urgently needed. In this study, we employed liquid ground-electrode dielectric barrier discharge (lgDBD) to achieve synergistic sterilization through electric field electroporation and reactive species oxidation. At a voltage of 12 kV, Pseudomonas fluorescens (ultraviolet and ozone-resistant) and Bacillus subtilis (chlorine-resistant) were completely inactivated within 8 and 6 min, respectively, surpassing a 7.0-log reduction. The lgDBD process showed good disinfection performance across a wide range of pH values and different practical water samples. Staining experiments suggest that cellular membrane damage contributes to this inactivation. In addition, we used a two-dimensional parallel streamer solver with kinetics code to fashion a representative model of the basic discharge unit, and discovered the presence of a persistent electric field during the discharge process with a peak value of 2.86 × 10 V/m. Plasma discharge generates excited state species such as O(D) and N(CΠ), and further forms reactive oxygen and nitrogen species at the gas-liquid interface. The physical process, which is driven by electric field-induced cell membrane electroporation, synergizes with the bactericidal effects of reactive oxygen and nitrogen species to provide effective disinfection. Adopting the lgDBD process enhances sterilization efficiency and adaptability, underscoring its potential to revolutionize physicochemical synergistic disinfection practices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2024.121386DOI Listing

Publication Analysis

Top Keywords

electric field
12
dielectric barrier
8
barrier discharge
8
reactive species
8
disinfection processes
8
lgdbd process
8
reactive oxygen
8
oxygen nitrogen
8
nitrogen species
8
discharge
5

Similar Publications

Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives.

Macromol Rapid Commun

December 2024

Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland.

Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Mobile technologies enable Parkinson's patients to improve their quality of life, manage symptoms, and enhance overall well-being through various applications (apps). There is no integrated list of specific capabilities available to cater to the unique needs of Parkinson's patient-focused mobile apps.

View Article and Find Full Text PDF

Seed tuber microbiome can predict growth potential of potato varieties.

Nat Microbiol

December 2024

Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands.

Potato vigour, the growth potential of seed potatoes, is a key agronomic trait that varies significantly across production fields due to factors such as genetic background and environmental conditions. Seed tuber microbiomes are thought to influence plant health and crop performance, yet the precise relationships between microbiome composition and potato vigour remain unclear. Here we conducted microbiome sequencing on seed tuber eyes and heel ends from 6 potato varieties grown in 240 fields.

View Article and Find Full Text PDF

Unconventional gas reservoirs, characterized by their complex geologies and challenging extraction conditions, demand innovative approaches to enhance gas production and ensure economic viability. Well stimulation techniques, such as hydraulic fracturing and acidizing, have become indispensable tools in unlocking the potential of these tight formations. However, the effectiveness of these techniques can vary widely depending on the specific characteristics of the reservoir.

View Article and Find Full Text PDF

We used machine learning to investigate the residual visual field (VF) deficits and macula retinal ganglion cell (RGC) thickness loss patterns in recovered optic neuritis (ON). We applied archetypal analysis (AA) to 377 same-day pairings of 10-2 VF and optical coherence tomography (OCT) macula images from 93 ON eyes and 70 normal fellow eyes ≥ 90 days after acute ON. We correlated archetype (AT) weights (total weight = 100%) of VFs and total retinal thickness (TRT), inner retinal thickness (IRT), and macular ganglion cell-inner plexiform layer (GCIPL) thickness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!