In vitro development and optimization of cell-laden injectable bioprinted gelatin methacryloyl (GelMA) microgels mineralized on the nanoscale.

Biomater Adv

Knight Cancer Precision Biofabrication Hub, Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, Oregon Health & Science University, United States of America; Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, United States of America; Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, United States of America; Department of Biomedical Engineering, School of Medicine Oregon Health & Science University, United States of America; Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health & Science University, United States of America. Electronic address:

Published: May 2024

Bone defects may occur in different sizes and shapes due to trauma, infections, and cancer resection. Autografts are still considered the primary treatment choice for bone regeneration. However, they are hard to source and often create donor-site morbidity. Injectable microgels have attracted much attention in tissue engineering and regenerative medicine due to their ability to replace inert implants with a minimally invasive delivery. Here, we developed novel cell-laden bioprinted gelatin methacrylate (GelMA) injectable microgels, with controllable shapes and sizes that can be controllably mineralized on the nanoscale, while stimulating the response of cells embedded within the matrix. The injectable microgels were mineralized using a calcium and phosphate-rich medium that resulted in nanoscale crystalline hydroxyapatite deposition and increased stiffness within the crosslinked matrix of bioprinted GelMA microparticles. Next, we studied the effect of mineralization in osteocytes, a key bone homeostasis regulator. Viability stains showed that osteocytes were maintained at 98 % viability after mineralization with elevated expression of sclerostin in mineralized compared to non-mineralized microgels, showing that mineralization can effectively enhances osteocyte maturation. Based on our findings, bioprinted mineralized GelMA microgels appear to be an efficient material to approximate the bone microarchitecture and composition with desirable control of sample injectability and polymerization. These bone-like bioprinted mineralized biomaterials are exciting platforms for potential minimally invasive translational methods in bone regenerative therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997158PMC
http://dx.doi.org/10.1016/j.bioadv.2024.213805DOI Listing

Publication Analysis

Top Keywords

injectable microgels
12
bioprinted gelatin
8
gelma microgels
8
microgels mineralized
8
mineralized nanoscale
8
minimally invasive
8
bioprinted mineralized
8
microgels
6
mineralized
6
bioprinted
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!