AbstractRhizocephalan barnacles are parasites of crustaceans that are known for dramatic effects on hosts, including parasitic castration, feminization, molt inhibition, and the facilitation of epibiosis. Most research on rhizocephalans has focused on carcinized hosts, with relatively little research directed to shrimp hosts that may experience distinct consequences of infection. Here, we describe a high-prevalence rhizocephalan-shrimp system in which multiple host changes are associated with infection: the dock shrimp infected by the rhizocephalan . In field-collected , infection by was associated with development of female sex characters at a smaller size and greater probability of epibiosis. Standardized video observations showed that infected performed grooming activities at higher rates than uninfected shrimp, suggesting that inhibited molting rather than direct behavioral modification is a likely mechanism for higher epibiosis rates. There was no difference in the composition of grooming behavior types or in general activity between infected and uninfected shrimp. Fatty acid compositions differed with infection, but total lipid concentrations did not, suggesting that parasite-driven shifts in host resource allocation were compensated or redirected from unmeasured tissues. Our results show that alters its host's role by provisioning an epibiotic substrate and also that it influences host physiology, resulting in feminization and fatty acid shifts. This study lays the groundwork for expanding rhizocephalan-shrimp research and encourages recognition of oft-ignored roles of parasitism in ecological communities.

Download full-text PDF

Source
http://dx.doi.org/10.1086/729497DOI Listing

Publication Analysis

Top Keywords

uninfected shrimp
8
fatty acid
8
shrimp
5
rhizocephalan parasite
4
parasite induces
4
induces pervasive
4
pervasive effects
4
effects shrimp
4
host
4
shrimp host
4

Similar Publications

Unveiling the Impact of Shrimp piRNAs on WSSV Infection and Immune Modulation.

Fish Shellfish Immunol

January 2025

Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand. Electronic address:

Piwi-interacting RNAs (piRNAs) are small non-coding RNAs that play a crucial role in gene regulation and immune defense. This study investigates their function in Penaeus vannamei shrimp during White Spot Syndrome Virus (WSSV) infection. Analysis of small RNA libraries from WSSV-infected shrimp hemocytes identified 82,788 piRNA homologs, with 138 showing altered expression during infection.

View Article and Find Full Text PDF

Comparative analysis of transcriptomics and metabolomics provides insights into the mechanisms of VP invasion and hepatopancreatic damage in Litopenaeus vannamei.

Fish Shellfish Immunol

November 2024

CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Acute hepatopancreatic necrosis disease (AHPND) poses significant threats to the global shrimp farming industry; however, its molecular mechanisms remain largely unknown. Previous research has primarily focused on comparisons between infected and non-infected states, limiting our understanding of VP mechanisms. We integrated transcriptomic and metabolomic analyses to investigate the pathogenic mechanism underpinning AHPND in highly vulnerable post-larvae (PL) stage shrimp.

View Article and Find Full Text PDF

AbstractRhizocephalan barnacles are parasites of crustaceans that are known for dramatic effects on hosts, including parasitic castration, feminization, molt inhibition, and the facilitation of epibiosis. Most research on rhizocephalans has focused on carcinized hosts, with relatively little research directed to shrimp hosts that may experience distinct consequences of infection. Here, we describe a high-prevalence rhizocephalan-shrimp system in which multiple host changes are associated with infection: the dock shrimp infected by the rhizocephalan .

View Article and Find Full Text PDF

A conflict of interest occurs when parasites manipulate the behavior of their host in contradictory ways to achieve different goals. In grass shrimp (Palaemonetes pugio), trematode parasites that use shrimp as an intermediate host cause the shrimp to be more active than usual around predators, whereas bopyrid isopod parasites that use shrimp as a final host elicit the opposite response. Since these parasites are altering the host's behavior in opposing directions, a conflict of interest would occur in co-infected shrimp.

View Article and Find Full Text PDF

Shrimp SIRT4 promotes white spot syndrome virus replication.

Fish Shellfish Immunol

February 2024

Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan. Electronic address:

In WSSV pathogenesis, the molecular mechanisms and the key host factors that regulate the viral replication and morphogenesis remain unclear. However, like most viruses, WSSV is known to induce metabolic reprogramming in several metabolic pathways including the host glutamine metabolism, and several recent reports have suggested that the sirtuins SIRT3, SIRT4, and SIRT5, which belong to a family of NAD-dependent deacetylases, play an important role in this regulation. Here we focus on characterizing LvSIRT4 from Litopenaeus vannamei and investigate its role in regulating glutamine dehydrogenase (GDH), an important enzyme that promotes glutaminolysis and viral replication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!