Tuberculosis (TB) is the leading infectious disease caused by and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against and . It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of . However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNA by transferring Trp to tRNA. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of TrpRS (TrpRS), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type in increased the MIC of IPA to 32-fold, and knock-down in made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.3c00585DOI Listing

Publication Analysis

Top Keywords

trp
10
ipa
9
indole propionic
8
propionic acid
8
tryptophanyl-trna synthetase
8
mimicking trp
8
trprs
6
acid disturbs
4
disturbs normal
4
normal function
4

Similar Publications

Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.

View Article and Find Full Text PDF

Heat sensation is mediated by specialized heat-sensitive neurons in the somatosensory system that innervates the skin. Previous studies revealed that noxious heat sensation is controlled by the sodium (Na)-activated potassium (K) channel Slick (Kcnt2), which is highly expressed in nociceptive Aδ-fibers. However, the mechanism by which Slick modulates heat sensation is poorly understood.

View Article and Find Full Text PDF

Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking.

View Article and Find Full Text PDF

Elucidation of a distinct photoreduction pathway in class II photolyase.

Proc Natl Acad Sci U S A

January 2025

Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.

Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S.

View Article and Find Full Text PDF

This study aimed to investigate the protective effect of a novel capsaicinoid glucoside (CG) against HO-induced oxidative stress in HepG2 cells and elucidate its underlying molecular mechanism. CG treatment significantly reduced HO-induced cell mortality and attenuated the production of lactate dehydrogenase and malondialdehyde in a dose-dependent manner. Moreover, CG drastically reduced the ROS levels 18.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!