A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Oxygen isotopes in orangutan teeth reveal recent and ancient climate variation. | LitMetric

Studies of climate variation commonly rely on chemical and isotopic changes recorded in sequentially produced growth layers, such as in corals, shells, and tree rings, as well as in accretionary deposits-ice and sediment cores, and speleothems. Oxygen isotopic compositions (δO) of tooth enamel are a direct method of reconstructing environmental variation experienced by an individual animal. Here, we utilize long-forming orangutan dentitions ( spp.) to probe recent and ancient rainfall trends on a weekly basis over ~3-11 years per individual. We first demonstrate the lack of any consistent isotopic enrichment effect during exclusive nursing, supporting the use of primate first molar teeth as environmental proxies. Comparisons of δO values (n=2016) in twelve molars from six modern Bornean and Sumatran orangutans reveal a high degree of overlap, with more consistent annual and bimodal rainfall patterns in the Sumatran individuals. Comparisons with fossil orangutan δO values (n=955 measurements from six molars) reveal similarities between modern and late Pleistocene fossil Sumatran individuals, but differences between modern and late Pleistocene/early Holocene Bornean orangutans. These suggest drier and more open environments with reduced monsoon intensity during this earlier period in northern Borneo, consistent with other Niah Caves studies and long-term speleothem δO records in the broader region. This approach can be extended to test hypotheses about the paleoenvironments that early humans encountered in southeast Asia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942278PMC
http://dx.doi.org/10.7554/eLife.90217DOI Listing

Publication Analysis

Top Keywords

climate variation
8
δo values
8
sumatran individuals
8
modern late
8
oxygen isotopes
4
isotopes orangutan
4
orangutan teeth
4
teeth reveal
4
reveal ancient
4
ancient climate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!