Intermolecular charge transfer (CT) complexes have emerged as versatile platforms with customizable optical properties that play a pivotal role in achieving tunable photoresponsive materials. In this study, we introduce an innovative approach for enhancing the modulation bandwidth and net data rates in optical wireless communications (OWCs) by manipulating combinations of monomeric molecules within intermolecular CT complexes. Concurrently, we extensively investigate the intermolecular charge transfer mechanism through diverse steady-state and ultrafast time-resolved spectral techniques in the mid-infrared range complemented by theoretical calculations using density functional theory. These intermolecular CT complexes empower precise control over the -3 dB bandwidth and net data rates in OWC applications. The resulting color converters exhibit promising performance, achieving a net data rate of ∼100 Mb/s, outperforming conventional materials commonly used in the manufacture of OWC devices. This research underscores the substantial potential of engineering intermolecular charge transfer complexes as an ongoing progression and commercialization within the OWC. This carries profound implications for future initiatives in high-speed and secure data transmission, paving the way for promising endeavors in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961838 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.4c00268 | DOI Listing |
Biomacromolecules
January 2025
Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States.
Injectable biomaterials play a vital role in modern medicine, offering tailored functionalities for diverse therapeutic and diagnostic applications. In ophthalmology, for instance, viscoelastic materials are crucial for procedures such as cataract surgery but often leave residues, increasing postoperative risks. This study introduces injectable fluorescent viscoelastics (FluoVs) synthesized via one-step controlled radical copolymerization of oligo(ethylene glycol) acrylate and fluorescein acrylate.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Birla Institute of Technology and Science, Pilani - K. K. Birla Goa Campus, Zuarinagar, 403726, Goa, India.
Context: Donor-acceptor (D-A) complexes, formed between two or more molecules held together by intermolecular forces, show interesting tunable properties and found applications in diverse fields, including semiconductors, catalysis, and sensors. In this study, we investigated the D-A complexes formed between perylene and 7,7,8,8-tetracyanoquinodimethane (TCNQ) and their chalcogen (S, Se) and fluorine derivatives. It was observed that interaction energies due to complex formation increase while the HOMO-LUMO gaps decrease with chalcogen substitutions.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China.
N-heterocyclic carbene (NHC)-based phosphorescent iridium complexes have attracted extensive attention due to their good optical properties and high stability in recent years. However, currently reported NHC-based iridium complexes can easily achieve emission of blue, green, or even ultraviolet light, while emission of red or deep-red light is relatively rare. Here, we report a new family of NHC-based deep-red iridium complexes (Ir1, Ir2, Ir3, and Ir4) featuring three-charge (0, -1, -2) ligands.
View Article and Find Full Text PDFThe elimination of the A' unit from -type Y6-derivatives has led to the development of a new class of -benzodipyrrole (-BDP)-based A-DBD-A-type NFAs. In this work, two new A-DBD-A-type NFAs, denoted as CFB and CMB, are designed and synthesized, where electron-withdrawing fluorine atoms and electron-donating methyl groups are substituted on the benzene ring of the -BDP moiety, respectively. CFB exhibits a blue-shifted absorption spectrum, stronger intermolecular interactions, shorter π-π stacking distances, and more ordered 3D intermolecular packing in the neat and blend films, enabling it to effectively suppress charge recombination in the PM6:CFB device showing a higher PCE of 16.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Center for Molecular Systems and Organic Devices (CMSOD), Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China.
Organic photosensitizers (PSs) possessing NIR-II emission and photodynamic/photothermal effect have received a great sense of attention for their cutting-edge applications in imaging-guided multimodal phototherapy. However, it is highly challenging to design efficient PSs with high luminescence and phototherapy performance simultaneously. In this study, a spiro-functionalization strategy is proposed to alleviate aggregate-caused quenching of PSs and promote photodynamic therapy, and the strategy is verified via a spiro[fluorine-9,9'-xanthene]-modified NIR-II PS (named SFX-IC) with an acceptor-donor-acceptor configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!