Purpose Of Review: Currently, HIV-infected patients are treated with antiretroviral therapy. However, when the treatment is interrupted, viral rebound occurs from latently infected cells. Therefore, scientists aim to develop an HIV-1 cure which eradicates or permanently silences the latent reservoir.
Recent Findings: Previously, scientists focused on the shock-and-kill cure strategy, which aims to eradicate the latent reservoir using latency-reactivating agents. Limited success shifts the interest towards the block-and-lock cure approach, which aims to achieve a functional cure by "blocking" HIV-1 transcription and "locking" the provirus in a deep latent state, resistant to treatment-interruption. In this strategy, latency promoting agents are used to induce transcriptional silencing and alter the epigenetics environment at the HIV promotor.
Summary: For the block-and-lock cure strategy to succeed more investigation into the transcriptional and epigenetic regulation of HIV-1 gene expression is necessary to design optimal latency-promoting agents. In this review, we will discuss the latency promoting agents that have been described in literature during the past 2 years (2022-2023).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10990034 | PMC |
http://dx.doi.org/10.1097/COH.0000000000000844 | DOI Listing |
J Neurovirol
December 2024
Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
Although antiretroviral therapy (ART) has dramatically improved the outlook of the HIV/AIDS pandemic, people living with HIV (PLWH) on suppressive therapy are still at higher risk for a range of comorbidities including cardiovascular disease (CVD) and HIV-associated neurocognitive disorders (HAND), among others. Chronic inflammation and immune activation are thought to be an underlying cause of these comorbidities. Many of the factors thought to drive chronic inflammation and immune activation in HIV overlap with factors known to induce trained immunity.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Bioinformatics Research Center, Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Background And Objective: Castration-resistant prostate cancer (CRPC) is caused by resistance to androgen deprivation treatment and leads to the death of patients and there is almost no chance of survival. Therefore, finding a cure to overcome CRPC is challenging and important, but discovering a new drug is very time-consuming and expensive. To overcome these problems, we used Drug repositioning (drug repurposing) strategy in this study.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Post Graduate School in Allergology and Internal Medicine "Guido Baccelli", Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, 70124, Italy.
Background: Mucopolysaccharidosis (MPS) type 1 S and type 2 are rare lysosomal storage disorders characterized by impaired enzyme production, resulting in glycosaminoglycans accumulation within lysosomes. Enzyme Replacement Therapy (ERT) with laronidase and idursulfase are first line treatments, respectively. However, infusion-related hypersensitivity reactions (HR) may lead to ERT discontinuation.
View Article and Find Full Text PDFVirology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, United States. Electronic address:
CCR5, a co-receptor critical for R5-tropic HIV entry into host cells, remains a key target for therapeutic interventions. HIV utilizes CCR5, expressed on T cells and macrophages, to facilitate viral entry. Genetic variants, such as the CCR5Δ32 homozygous mutation that confers protection to HIV infection, have made CCR5 a main target for gene-editing technologies, small-molecule inhibitors, and monoclonal antibody-based therapies.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Shanghai Institute of Technology, School of Chemical and Environmental Engineering, CHINA.
Laminating a free-standing carbon electrode film onto perovskite film is a promising method for fabricating HTM (hole transport material)-free carbon electrode perovskite solar cells (c-PSCs), offering more flexibility by decoupling the processes of carbon electrode and perovskite layer formation. However, the power conversion efficiency (PCE) of laminated HTM-free c-PSCs (<16.5%) remains lower compared to c-PSCs with printed carbon pastes (>20%), primarily due to poor interfacial contact between the perovskite and carbon layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!