The catalytic, undirected borylation of alkyl C-H bonds typically occurs at high reaction temperatures or with excess substrate, or both, because of the low reactivity of alkyl C-H bonds. Here we report a new iridium system comprising 2-anilino-1,10-phenanthroline as the ligand that catalyzes the borylation of alkyl C-H bonds with little to no induction period and with high reaction rates. This superior activation and reactivity profile of 2-aminophenanthroline-ligated catalysts leads to broader reaction scope, including reactions of sensitive substrates, such as epoxides and glycosidic acetals, enhanced diastereoselectivity, and higher yields of borylated products. These catalysts also enable the borylation of alkanes, amines, and ethers at room temperature for the first time. Mechanistic studies imply that facile -borylation occurs under the reaction conditions and that iridium complexes containing -boryl aminophenanthrolines are competent precatalysts for the reaction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620480 | PMC |
http://dx.doi.org/10.1021/jacs.3c12981 | DOI Listing |
Molecules
January 2025
School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Isoindigo (IID)-based non-fullerene acceptors, known for their broad absorption spectra and high charge carrier mobilities, play a crucial role in organic photovoltaics. In this study, two A-DA'D-A type unfused ring acceptors (URAs), IDC8CP-IC and IDC6CP-IC, were designed and synthesized using cyclopentadithiophene (CPDT) and IID core units, each functionalized with different alkyl chains (2-hexyldecyl and 2-octyldodecyl), through an atom- and step-efficient direct C-H arylation (DACH) method. Both URAs, despite the absence of non-covalent conformation locking between CPDT and IID, demonstrated favorable molecular planarity, broad absorption ranges, low band gaps, and high molar absorption coefficients.
View Article and Find Full Text PDFChemistry
January 2025
Université de Rennes 1, Chemistry, Equipe CORINT, Institut des Sciences Chimiques de Rennes, Université de Rennes 1 - UMR 6226 CNRS, Bâtiment 10A, Bureau 158, Avenue du Général Leclerc, 35042, Rennes, FRANCE.
Capozzi's groundbreaking work in 1982 introduced a fascinating reaction involving highly reactive tertiary aliphatic cations and silylated alkynes. This reaction provided an innovative solution to the challenge of coupling a fully substituted tertiary aliphatic fragment with an alkyne moiety. Building upon Capozzi's pioneering efforts, we started an extensive exploration of reaction conditions to expand the initial scope of this reaction.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China.
A highly practical and efficient Cp*Co(III)-catalyzed C-H alkylation/alkenylation reaction of anilides with maleimides and acrylates was developed, during which a weakly coordinating amide carbonyl group functioned as the directing group. This approach features high efficiency, good functional group tolerance, and broad substrate scope, and a variety of 3-substituted succinimides and -alkenylated anilides were synthesized in moderate to excellent yields. Furthermore, the reaction is highly selective, affording mono--alkylated/alkenylated products only.
View Article and Find Full Text PDFChemistry
January 2025
University of Jyväskylä: Jyvaskylan Yliopisto, Chemistry, FINLAND.
The reaction of three equivalents of LiCH(SiMe3)2 with TiCl3(NMe3)2 afforded the rare homoleptic Ti(III) alkyl Ti{CH(SiMe3)2}3 (1) which crystallized as blue needles in 32 % yield. Single crystal X-Ray data for 1 showed a trigonal pyramidal coordination geometry around titanium, which could be ascribed to weak interactions between the C-H bonds and the Ti(III) atom based on computational results. X-band EPR spectroscopy give spectral parameters consistent with the proposed Ti(III) formulation.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Chongqing Research Center for Pharmaceutical Engineering, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
A novel palladium-catalyzed allylic C-H alkylation of terminal olefins with 3-carboxamide oxindoles is described. A variety of new 3-carboxamide-3-allylation oxindoles with an all-carbon quaternary center were obtained in moderate to good yields (up to 99%). In addition, the asymmetric version of this reaction was also explored, providing moderate enantioselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!