A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unique Viscoelasticity and Hierarchical Relaxation Dynamics of Molecular Granular Materials. | LitMetric

Unique Viscoelasticity and Hierarchical Relaxation Dynamics of Molecular Granular Materials.

Nano Lett

State Key Laboratory of Luminescent Materials and Devices and South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China.

Published: March 2024

Resulting from the dense packing of subnanometer molecular clusters, molecular granular materials (MGMs) are shown to maintain high elasticity far above their apparent glass transition temperature (*). However, our microscopic understanding of their structure-property relationship is still poor. Herein, 1 nm polyhedral oligomeric silsesquioxanes (POSSs) are appended to a backbone chain in a brush configuration with different flexible linker chains. Assemblies of these brush polymers exhibit hierarchical relaxation dynamics with the glass transition arising from the cooperative dynamics of packed POSSs. The interaction among the assemblies can be strengthened by increasing the rigidity of linkers with the MGM relaxation modes changing from colloid- to polymer chain-like behavior, rendering their tunable viscoelasticity. This finally contributes to the decoupling of mechanical and thermal properties by showing elasticity dominant mechanical properties at a temperature 150 K above the *.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c03636DOI Listing

Publication Analysis

Top Keywords

hierarchical relaxation
8
relaxation dynamics
8
molecular granular
8
granular materials
8
glass transition
8
unique viscoelasticity
4
viscoelasticity hierarchical
4
dynamics molecular
4
materials dense
4
dense packing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!