A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of repulsion on entropy scaling and density scaling of monatomic fluids. | LitMetric

Entropy scaling is applied to the shear viscosity, self-diffusion coefficient, and thermal conductivity of simple monatomic fluids. An extensive molecular dynamics simulation series is performed to obtain these transport properties and the residual entropy of three potential model classes with variable repulsive exponents: n, 6 Mie (n = 9, 12, 15, and 18), Buckingham's exponential-six (α = 12, 14, 18, and 30), and Tang-Toennies (αT = 4.051, 4.275, and 4.600). A wide range of liquid and supercritical gas- and liquid-like states is covered with a total of 1120 state points. Comparisons to equations of state, literature data, and transport property correlations are made. Although the absolute transport property values within a given potential model class may strongly depend on the repulsive exponent, it is found that the repulsive steepness plays a negligible role when entropy scaling is applied. Hence, the plus-scaled transport properties of n, 6 Mie, exponential-six, and Tang-Toennies fluids lie basically on one master curve, which closely corresponds with entropy scaling correlations for the Lennard-Jones fluid. This trend is confirmed by literature data of n, 6 Mie, and exponential-six fluids. Furthermore, entropy scaling holds for state points where the Pearson correlation coefficient R is well below 0.9. The condition R > 0.9 for strongly correlating liquids is thus not necessary for the successful application of entropy scaling, pointing out that isomorph theory may be a part of a more general framework that is behind the success of entropy scaling. Density scaling reveals a strong influence of the repulsive exponent on this particular approach.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0196592DOI Listing

Publication Analysis

Top Keywords

entropy scaling
28
scaling
9
entropy
8
scaling density
8
density scaling
8
monatomic fluids
8
fluids entropy
8
scaling applied
8
transport properties
8
potential model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!