IL-33 is a cytokine central to type 2 immune pathology in chronic airway disease. This cytokine is abundantly expressed in the respiratory epithelium and increased in disease, but how expression is regulated is undefined. Here we show that increased IL33 expression occurs from multiple noncanonical promoters in human chronic obstructive pulmonary disease (COPD), and it facilitates production of alternatively spliced isoforms in airway cells. We found that phorbol 12-myristate 13-acetate (PMA) can activate IL33 promoters through protein kinase C in primary airway cells and lines. Transcription factor (TF) binding arrays combined with RNA interference identified activator protein (AP) TFs as regulators of baseline and induced IL33 promoter activity. ATAC-Seq and ChIP-PCR identified chromatin accessibility and differential TF binding as additional control points for transcription from noncanonical promoters. In support of a role for these TFs in COPD pathogenesis, we found that AP-2 (TFAP2A, TFAP2C) and AP-1 (FOS and JUN) family members are upregulated in human COPD specimens. This study implicates integrative and pioneer TFs in regulating IL33 promoters and alternative splicing in human airway basal cells. Our work reveals a potentially novel approach for targeting IL-33 in development of therapeutics for COPD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972587PMC
http://dx.doi.org/10.1172/jci.insight.174786DOI Listing

Publication Analysis

Top Keywords

noncanonical promoters
12
activator protein
8
chronic airway
8
airway disease
8
airway cells
8
il33 promoters
8
promoters
5
airway
5
protein transcription
4
transcription factors
4

Similar Publications

Nuclear factor kappa B (NF-kB) is a kind of transcription factor which resides in cytoplasm of each cell and on activation, it translocates to the nucleus. It is activated by a many inducible agents including endotoxins, inflammatory stimuli, carcinogens, pathogens, nicotine, and tumour promoters, etc. NF-kB is activated by canonical and non-canonical signalling pathways which has different signalling compounds and its biological functions.

View Article and Find Full Text PDF

KHSRP (KH-type splicing regulatory protein) is a multifunctional nucleic acid-binding protein that regulates various cellular processes, with critical roles in controlling gene expression. G-quadruplexes (G4s) are noncanonical nucleic acid structures involved in essential cellular activities, including gene expression, and are recognized as potential therapeutic targets in cancer. The biological functions of G4s are mediated by proteins making their formation highly dynamic within cells.

View Article and Find Full Text PDF

Microplastics can alter structural configurations of human non-canonical G-quadruplex DNA.

Environ Toxicol Pharmacol

January 2025

Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India; Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy-Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India. Electronic address:

Microplastics (MP) with a diameter of less than 150 μm can enter the lymph and bloodstream systems, induce cellular toxicity and damage DNA. G-quadruplexes (GQs) are tetraplex DNA secondary structures found in the human genomes that play important roles in replication, transcription and genomic integrity. Comprehending the biological and molecular processes underlying the activities of MPs could aid in estimating potential hazards to humans.

View Article and Find Full Text PDF

Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.

View Article and Find Full Text PDF

Gram-negative bacteria-driven increase of cytosolic phospholipase A2 leads to activation of Kupffer cells.

Cell Mol Life Sci

December 2024

Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.

Article Synopsis
  • Bacterial infections are a major issue for patients with cirrhosis, impacting their overall health due to their role in increasing morbidity and mortality.
  • This study investigates the role of cytosolic phospholipase A2 (cPLA2) in the activation of human Kupffer cells (HKCs) by gram-negative bacteria, specifically looking at how E. coli influences HKC activation through specific signaling pathways.
  • The findings suggest that cPLA2 is crucial for HKC activation in response to E. coli, linking its activity to the regulation by transcription factors STAT3 and RelB via the ERK and non-canonical NF-κB signaling pathways, potentially paving the way for therapeutic strategies in managing bacterial infections in cirrhotic patients
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!