Building (001) oriented FAPbI films for high-performing perovskite solar cells.

Chem Commun (Camb)

Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.

Published: March 2024

The solution processed FAPbI perovskite usually suffers from chaotic orientations. Herein, a template structure of oriented 2D perovskite is used to obtain a high-quality FAPbI film with (001) preferred orientation by cation exchange. The highly oriented BAPbI serves as a growth template and promotes the (001) orientation of the 3D perovskite. The dominantly (001) orientated FAPbI perovskite exhibits uniform surface morphology and suppressed film defects.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc00212aDOI Listing

Publication Analysis

Top Keywords

fapbi perovskite
8
perovskite
5
building 001
4
001 oriented
4
fapbi
4
oriented fapbi
4
fapbi films
4
films high-performing
4
high-performing perovskite
4
perovskite solar
4

Similar Publications

The interfaces between the perovskite and charge-transporting layers typically exhibit high defect concentrations, which are the primary cause of open-circuit voltage loss. Passivating the interface between the perovskite and electron-transporting layer is particularly challenging due to the dissolution of surface treatment agents during the perovskite coating. In this study, a coherent FAPbICl buried interface was simultaneously formed during the preparation of FAPbI.

View Article and Find Full Text PDF

Nonalloyed α-phase formamidinium lead triiodide solar cells through iodine intercalation.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, P. R. China.

Formamidinium lead triiodide (FAPbI) is considered the most promising composition for high-performing single-junction solar cells. However, nonalloyed α-FAPbI is metastable with respect to the photoinactive δ-phase. We have developed a kinetic modulation strategy to fabricate high-quality and stable nonalloyed α-FAPbI films, assisted by cogenetic volatile iodine intercalation and decalation.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, I (Pb) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI (FA=CH(NH)) material, are found to create electron (hole) traps when the surfaces with I (Pb) antisite defects are negatively (positively) charged.

View Article and Find Full Text PDF

Band Tailoring Enabled Perovskite Devices for X-Ray to Near-Infrared Photodetection.

Adv Sci (Weinh)

January 2025

School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.

Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!