Previous exploration of the conformational space of sodiated mono-saccharides using a random search algorithm leads to ∼10 structurally distinct conformers covering an energy range of ∼150 kJ mol. Thus, it is reasonable to expect that the number of distinct conformers for a given disaccharide would be on the order of 10. Efficient identification of distinct conformers at the first-principles level has been demonstrated with the assistance of neural network potential (NNP) with an accuracy of ∼1 kJ mol compared to DFT. Leveraging a local minima database of neutral and sodiated glucose (Glc), we develop algorithms to systematically explore the conformation landscape of 19 Glc-based sodiated disaccharides. To accelerate the exploration, the NNP method is implemented. The NNP achieves an accuracy of ∼2.3 kJ mol compared to DFT, offering a comparable quality to that of DFT. Through a multi-model approach integrating DFTB3, NNP and DFT, we can rapidly locate low-energy disaccharide conformers at the first-principles level. The methodology we show here can be used to efficiently explore the potential energy landscape of any di-saccharides when first-principles accuracy is required.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05362hDOI Listing

Publication Analysis

Top Keywords

distinct conformers
12
exploration conformational
8
conformational space
8
space sodiated
8
neural network
8
conformers first-principles
8
first-principles level
8
mol compared
8
compared dft
8
first-principles
4

Similar Publications

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Capturing eukaryotic ribosome dynamics in situ at high resolution.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.

View Article and Find Full Text PDF

Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions.

View Article and Find Full Text PDF

Impact of cold plasma-assisted Non-thermal deamidation and glycosylation on the construction of sugar derivative-zein conjugates for enhancing pickering foam stability: Technical principles and molecular interactions.

Food Res Int

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, No. 9, No. 13 Ave., TEDA, Tianjin 300457, China. Electronic address:

There is an urgent need for stable, plant-based Pickering foams to address the growing consumer demand for sustainable, low-calorie, aerated sweet foods. This study employed a cold plasma-assisted deamidation and glycosylation (CPDG) approach to promote hydrophilic reassembly of zein, resulting in the formation of sugar derivative-zein conjugates. This was accomplished by coupling deamidated zein with polyhydroxy sugars including sucralose (Suc), maltitol (Mal), mannitol (Man), and stevioside (Ste).

View Article and Find Full Text PDF

Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!