Amphiphilic diblock copolymers containing a block of 2-methacryloyloxyethyl phosphorylcholine (MPC) with unique properties to prevent nonspecific protein adsorption and enhance lubrication in aqueous media and a block of dopamine methacrylamide (DOPMA) distinguished by excellent adhesion performance were synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization for the first time. The DOPMA monomer with an acetonide-protected catechol group (acetonide-protected dopamine methacrylamide (ADOPMA)) was used, allowing the prevention of undesirable side reactions during polymerization and oxidation during storage. The adsorption behavior of the diblock copolymers with protected and unprotected catechol groups on gold surfaces was probed using attenuated total reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy, surface-enhanced infrared absorption spectroscopy (SEIRAS), and reflection-absorption infrared spectroscopy (RAIRS). The copolymers pMPC--pADOPMA demonstrated physisorption with rapid adsorption and ultrasound-assisted desorption, while the copolymers pMPC--DOPMA exhibited chemical adsorption with slower dynamics but a stronger interaction with the gold surface. SEIRAS and RAIRS allowed proving the reorientation of the diblock copolymers during adsorption, demonstrating the exposure of the pMPC block toward the aqueous phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956495 | PMC |
http://dx.doi.org/10.1021/acs.langmuir.3c03925 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 284, Sangareddy, Telangana, India.
An organomagnesium complex containing an imino-phosphanamidinate ligand was found to be a competent catalyst for the ROP of -LA and ε-CL as well as their copolymerization sequential addition of monomers, resulting in the formation of PCL--PLA diblock copolymer. The polymers obtained were characterized by H, C, DOSY NMR, DSC, TGA, POM, and SEM.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo, Norway.
Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).
View Article and Find Full Text PDFAdv Mater
January 2025
Príncipe Felipe Research Center, Polymer Therapeutics Lab., Valencia, 46012, Spain.
Mitochondria play critical roles in regulating cell fate, with dysfunction correlating with the development of multiple diseases, emphasizing the need for engineered nanomedicines that cross biological barriers. Said nanomedicines often target fluctuating mitochondrial properties and/or present inefficient/insufficient cytosolic delivery (resulting in poor overall activity), while many require complex synthetic procedures involving targeting residues (hindering clinical translation). The synthesis/characterization of polypeptide-based cell penetrating diblock copolymers of poly-L-ornithine (PLO) and polyproline (PLP) (PLO-PLP, n:m ratio 1:3) are described as mitochondria-targeting nanocarriers.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Civil Engineering and Architecture, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China.
Anion exchange membranes (AEMs) as a kind of important functional material are widely used in fuel cells. However, synthetic AEMs generally suffer from low conductivity, poor alkaline stability, and poor dimensional stability. Constructing efficient ion transport channels is widely regarded as one of the most effective strategies for developing AEMs with high conductivity and low swelling ratio.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!