Herein, nanocomposites made of Ni nanoparticles distributed in an amorphous silicon nitride (Ni/a-SiN) matrix, on the one hand, and within an amorphous silicon dioxide (Ni/a-SiO) matrix, on the other hand, were synthesized from the same Ni-modified polysilazane precursor. In both compounds, the Ni/Si atomic ratio (0.06-0.07), average Ni nanocrystallite size (7.0-7.6 nm) and micro/mesoporosity of the matrix were rigorously fixed. Hydrogen (H)-temperature-programmed desorption (TPD) profile analysis revealed that the activation energy for H desorption at about 100-130 °C evaluated for the Ni/a-SiN sample (47.4 kJ mol) was lower than that for the Ni/a-SiO sample (68.0 kJ mol). Mechanistic study with X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations revealed that, at Ni nanoparticle/matrix heterointerfaces, Ni becomes more covalently bonded to N atoms in the a-SiN matrix compared to O atoms in the a-SiO matrix. Therefore, based on experimental and theoretical studies, we elucidated that nickel-nitrogen (Ni-N) interactions at the heterointerface lead to remarkable Ni d band broadening and downshifting of the d band center relative to those generated by Ni-oxygen (Ni-O) interactions at the heterointerface. This facilitates H desorption, as experimentally observed in the Ni/a-SiN sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt04155g | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China.
For silicon-based devices using dielectric oxides doped with rare earth ions, their electroluminescence (EL) performance relies on the sufficient carrier injection. In this work, the atomic GaO layers are inserted within the Er-doped GeO nanofilms fabricated by atomic layer deposition (ALD). Both Ga(CH) and Ga(CH) could realize the ALD growth of GaO onto the as-deposited GeO nanofilm with unaffected deposition rates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.
An energy material has been developed using a one-step chemical reduction method, incorporating silver nanoparticles (AgNPs) that encapsulate micro-sized silicon (mSi) flakes. SEM investigation revealed complete encapsulation of silicon flakes by AgNP's dendritic structure, EDX confirmed the deposition of Ag on Si flakes. Raman spectroscopy confirmed the formation of silver and silicon oxides.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Maxillofacial Orthopaedics and Orthodontics, Pomeranian Medical University in Szczecin, Al. Powst. Wlkp. 72, 70111 Szczecin, Poland.
Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!