Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants?

Front Plant Sci

Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.

Published: February 2024

Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs . Strikingly, phosphorylation occurs by an apparent enzyme-independent but Mg-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs . We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917965PMC
http://dx.doi.org/10.3389/fpls.2024.1347922DOI Listing

Publication Analysis

Top Keywords

protein pyrophosphorylation
16
post-translational modification
12
cellular events
8
protein
6
pyrophosphorylation
6
pp-insps
5
pyrophosphorylation inositol
4
inositol phosphates
4
phosphates novel
4
novel post-translational
4

Similar Publications

spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a sporulation-specific, forespore-localized putative chaperone from a distinct higher-order clade of AAA+ ATPases that promotes the peptidoglycan glycosyltransferase activity of MurG during sporulation, even though MurG does not normally require activation during vegetative growth.

View Article and Find Full Text PDF

The lantibiotic pore-forming peptide nisin is a promising candidate in the fight against multidrug-resistant bacteria due to its unique structure, which allows it to disrupt bacteria in two distinct ways─Lipid II trafficking and transmembrane pore formation. However, exactly how nisin and Lipid II assemble into oligomeric pore structures in the bacterial membrane is not known. Spontaneous peptide assembly into pores is difficult to observe in even the very long-time scale molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

The expanding landscape of canonical and non-canonical protein phosphorylation.

Trends Biochem Sci

November 2024

Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada. Electronic address:

Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation.

View Article and Find Full Text PDF

Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence.

View Article and Find Full Text PDF

Phosphoantigen recognition by Vγ9Vδ2 T cells.

Eur J Immunol

November 2024

Institute for Virology and Immunobiology, Dept of Medicine, University of Würzburg, Würzburg, Germany.

Vγ9Vδ2 T cells comprise 1-10% of human peripheral blood T cells. As multifunctional T cells with a strong antimicrobial and antitumor potential, they are of strong interest for immunotherapeutic development. Their hallmark is the eponymous Vγ9Vδ2 T-cell antigen receptor (TCR), which mediates activation by so-called "phosphoantigens" (PAg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!