Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide-modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m). The dually crosslinked Gel-Alg-CDH-Ca-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. The growth factor and drug-loaded biomimetic bilayer hydrogel scaffold are customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma and inhibits cornea scarring in rabbit cornea keratoplasty.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918636 | PMC |
http://dx.doi.org/10.1093/rb/rbae012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!