The dorsal striatum, an essential nucleus in subcortical areas, has a crucial role in controlling a variety of complex cognitive behaviors; however, few studies have been conducted in recent years to explore the functional subregions of the dorsal striatum that are significantly activated when performing multiple tasks. To explore the differences and connections between the functional subregions of the dorsal striatum that are significantly activated when performing different tasks, we propose a framework for functional division of the dorsal striatum based on a graph neural network model. First, time series information for each voxel in the dorsal striatum is extracted from acquired functional magnetic resonance imaging data and used to calculate the connection strength between voxels. Then, a graph is constructed using the voxels as nodes and the connection strengths between voxels as edges. Finally, the graph data are analyzed using the graph neural network model to functionally divide the dorsal striatum. The framework was used to divide functional subregions related to the four tasks including olfactory reward, "0-back" working memory, emotional picture stimulation, and capital investment decision-making. The results were further subjected to conjunction analysis to obtain 15 functional subregions in the dorsal striatum. The 15 different functional subregions divided based on the graph neural network model indicate that there is functional differentiation in the dorsal striatum when the brain performs different cognitive tasks. The spatial localization of the functional subregions contributes to a clear understanding of the differences and connections between functional subregions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2024109 | DOI Listing |
Neuroimage Clin
December 2024
Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal; Faculty of Medicine, Institute of Physiology, University of Coimbra, 3004-531 Coimbra, Portugal. Electronic address:
Dysfunctional response inhibition, mediated by the striatum and its connections, is thought to underly the clinical manifestations of obsessive-compulsive disorder (OCD). However, the exact neural mechanisms remain controversial. In this study, we undertook a novel approach by positing that a) inhibition is a dynamic construct inherently susceptible to numerous failures, which require error-processing, and b) the actor-critic framework of reinforcement learning can integrate neural patterns of inhibition and error-processing in OCD with their behavioural correlates.
View Article and Find Full Text PDFBackground: Early adversity has been reported as a risk factor for dementia. Adverse maternal control (MC) during childhood is believed to impact neural developmental pathways. Here we studied the associations between adverse MC and the volume of the dorsal striatum in older adults given evidence from the childhood adversity literature of structural reductions and altered reward processing.
View Article and Find Full Text PDFBackground: Apathy is marked by diminished motivation and goal-directed behavior, prevalent in neurodegenerative diseases like Alzheimer's disease (AD) and Parkinson's disease (PD). Effort-based decision-making paradigms (EBDM), which require choices between tasks of varying effort levels for varying rewards, are effective assessments of goal-directed behavior. Using a transdiagnostic approach, we are examining the neurodegeneration of networks on apathy and EBDM.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) agitation is a distressing neuropsychiatric symptom characterized by excessive motor activity, verbal aggression, or physical aggression. Agitation is one of the causes of caregiver distress, increased morbidity and mortality, and early institutionalization in patients with AD. Current medications used for the management of agitation have modest efficacy and have substantial side effects.
View Article and Find Full Text PDFBrain Sci
November 2024
Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
Background/objectives: Dopamine replacement therapy for Parkinson's disease (PD) may lead to disabling incontrollable movements known as L-DOPA-induced dyskinesias. Transcranial magnetic stimulation (TMS) has been applied as non-invasive therapy to ameliorate motor symptoms and dyskinesias in PD treatment. Recent studies have shown that TMS-induced motor effects might be related to dopaminergic system modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!