A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular and Heterojunction Device Engineering of Solution-Processed Conjugated Reticular Oligomers: Enhanced Photoelectrochemical Hydrogen Evolution through High-Effective Exciton Separation. | LitMetric

Covalent organic frameworks (COFs) face limited processability challenges as photoelectrodes in photoelectrochemical water reduction. Herein, sub-10 nm benzothiazole-based colloidal conjugated reticular oligomers (CROs) are synthesized using an aqueous nanoreactor approach, and the end-capping molecular strategy to engineer electron-deficient units onto the periphery of a CRO nanocrystalline lattices (named CROs-Cg). This results in stable and processable "electronic inks" for flexible photoelectrodes. CRO-BtzTp-Cg and CRO-TtzTp-Cg expand the absorption spectrum into the infrared region and improve fluorescence lifetimes. Heterojunction device engineering is used to develop interlayer heterojunction and bulk heterojunction (BHJ) photoelectrodes with a hole transport layer, electron transport layer, and the main active layers, using a CROs/CROs-Cg or one-dimensional (1D) electron-donating polymer HP18 mixed solution via spinning coating. The ITO/CuI/CRO-TtzTp-Cg-HP18/SnO/Pt photoelectrode shows a photocurrent of 94.9 µA cm at 0.4 V versus reversible hydrogen electrode (RHE), which is 47.5 times higher than that of ITO/Bulk-TtzTp. Density functional theory calculations show reduced energy barriers for generating adsorbed H* intermediates and increased electron affinity in CROs-Cg. Mott-Schottky and charge density difference analyses indicate enhanced charge carrier densities and accelerated charge transfer kinetics in BHJ devices. This study lays the groundwork for large-scale production of COF nanomembranes and heterojunction structures, offering the potential for cost-effective, printable energy systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11095168PMC
http://dx.doi.org/10.1002/advs.202308535DOI Listing

Publication Analysis

Top Keywords

heterojunction device
8
device engineering
8
conjugated reticular
8
reticular oligomers
8
transport layer
8
molecular heterojunction
4
engineering solution-processed
4
solution-processed conjugated
4
oligomers enhanced
4
enhanced photoelectrochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!