X-ray dark-field computed tomography for monitoring of tissue freezing.

Sci Rep

Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.

Published: March 2024

AI Article Synopsis

  • Monitoring freezing in tissue is essential during cryoablation, a cancer treatment that freezes tumors to destroy them without harming nearby healthy tissue.
  • A common way to check the freezing is through CT scans, but it's hard to see the difference between frozen and unfrozen tissue.
  • Researchers found that using X-ray dark-field imaging can make it much easier to see frozen areas, which may improve how doctors monitor the treatment.

Article Abstract

Accurately monitoring the extent of freezing in biological tissue is an important requirement for cryoablation, a minimally invasive cancer treatment that induces cell death by freezing tissue with a cryoprobe. During the procedure, monitoring is required to avoid unnecessary harm to the surrounding healthy tissue and to ensure the tumor is properly encapsulated. One commonly used monitoring method is attenuation-based computed tomography (CT), which visualizes the ice ball by utilizing its hypoattenuating properties compared to unfrozen tissue. However, the contrast between frozen and unfrozen tissue remains low. In a proof-of-principle experiment, we show that the contrast between frozen and unfrozen parts of a porcine phantom mimicking breast tissue can be greatly enhanced by acquiring X-ray dark-field images that capture the increasing small-angle scattering caused by the ice crystals formed during the procedure. Our results show that, compared to X-ray attenuation, the frozen region is detected significantly better in dark-field radiographs and CT scans of the phantom. These findings demonstrate that X-ray dark-field imaging could be a potential candidate for improved monitoring of cryoablation procedures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920745PMC
http://dx.doi.org/10.1038/s41598-024-56201-3DOI Listing

Publication Analysis

Top Keywords

x-ray dark-field
12
computed tomography
8
unfrozen tissue
8
contrast frozen
8
frozen unfrozen
8
tissue
7
monitoring
5
x-ray
4
dark-field computed
4
tomography monitoring
4

Similar Publications

This work involves the preparation of dual surrogate-imprinted polymers (D-MIPs) for the capture of SARS-CoV-2. To achieve this goal, an innovative and novel dual imprinting approach using carboxylated-polystyrene (PS-COOH) nanoparticles with a diameter of 100 nm and a SARS-CoV-2 Spike-derived peptide was carried out at the surface of amine-functionalized silica (PS-NH) microspheres with a diameter of 500 nm. Firstly, PS-COOH nanoparticles with the same size and spherical shape as the SARS-CoV-2 virus were employed to form hemispherical indentations (HI) at the surface of the PS-NH microspheres (obtaining dummy particle-imprinted polymers, HI-MIPs).

View Article and Find Full Text PDF

Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.

View Article and Find Full Text PDF

We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.

View Article and Find Full Text PDF

A statistical approach for interplanar spacing metrology at a relative uncertainty below 10 using scanning transmission electron microscopy.

Micron

January 2025

Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel. Electronic address:

Atomic-scale metrology in scanning transmission electron microscopy (STEM) allows to measure distances between individual atomic columns in crystals and is therefore an important aspect of their structural characterization. Furthermore, it allows to locally resolve strain in crystals and to calibrate precisely the pixel size in STEM. We present a method dedicated to the evaluation of interplanar spacing (d-spacing) based on an algorithm including curve fitting of processed high-angle annular dark-field STEM (HAADF STEM) signals.

View Article and Find Full Text PDF

Background: A significant proportion of false positive recalls of mammography-screened women is due to benign breast cysts and simple fibroadenomas. These lesions appear mammographically as smooth-shaped dense masses and require the recalling of women for a breast ultrasound to obtain complementary imaging information. They can be identified safely by ultrasound with no need for further assessment or treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!