Cerium oxide nanoparticles (CeO NPs, NM-212) are well-known for their catalytic properties and antioxidant potential, and have many applications in various industries, drug delivery, and cosmetic formulations. CeO NPs exhibit strong antimicrobial activity and can be used to efficiently remove pathogens from different environments. However, knowledge of the toxicological evaluation of CeO NPs is too limited to support their safe use. In this study, CeO NPs were orally administered to Sprague Dawley rats for 13 weeks at the doses of 0, 10, 100, and 1000 mg/kg bw/day, followed by a four week recovery period. The hematology values for the absolute and relative reticulocyte counts in male rats treated with 1000 mg/kg bw/day CeO NPs were lower than those in control rats. The clinical chemistry values for sodium and chloride in the treated male rat groups (100 and 1000 mg/kg/day) and total protein and calcium in the treated female rat groups (100 mg/kg/day) were higher than those in the control groups. However, these changes were not consistent in both sexes, and no abnormalities were found in the corresponding pathological findings. The results showed no adverse effects on any of the parameters assessed. CeO NPs accumulated in the jejunum, colon, and stomach wall of rats administered 1000 mg/kg CeO NPs for 90 days. However, these changes were not abnormal in the corresponding histopathological and immunohistochemical examinations. Therefore, 1000 mg/kg bw/day may be considered the "no observed adverse effect level" of CeO NPs (NM-212) in male and female SD rats under the present experimental conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920649 | PMC |
http://dx.doi.org/10.1038/s41598-024-54659-9 | DOI Listing |
J Mater Chem B
January 2025
Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Colon cancer is a major global health threat. Early detection and treatment are crucial for improving survival rates. Conventional methods, like colonoscopies and CT scans, have limitations, emphasizing the need for innovative strategies.
View Article and Find Full Text PDFNanoImpact
December 2024
Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:
ACS Nano
December 2024
Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
Alloy nanocatalysts exhibit enhanced activity, selectivity, and stability mainly due to their versatile phases and atomic structures. However, nanocatalysts' "real" functional structures may vary from their as-synthesized status due to the structural and chemical changes during the activation and reaction conditions. Herein, we studied the activated CuPd/CeO nanocatalysts under the CO oxidation reaction featuring an atomic-scale phase separation process, resulting in a notable "hysteresis" in catalyst performance.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Environmental Engineering, Faculty of Engineering, Mersin University, 33343, Yenisehir, Mersin, Turkey.
Cerium oxide NPs (-CeO), with notable performance in various biological tests like redox activity, free radical scavenging, and biofilm inhibition, emerge as significant candidates to address issues in related areas. In this research, copper-decorated -CeO (Cu@-CeO) were first synthesized and then characterized using advanced techniques such as SEM-EDX, XRD, XPS, BET, and ICP-OES. The biochemical properties of the obtained Cu@-CeO nanostructure and its performance in polyethersulfone (PES) membranes were thoroughly investigated in this research study.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, Turkey. Electronic address:
Foam-based wound dressing materials produced by dispersing gas phases in a polymeric material are soft, adapt to the body shape, and allow the absorption of wound exudate due to their porous structure. Most of these formulations are based on synthetic substances such as polyurethane. However, biopolymers have entered the field as a new player thanks to their biocompatible and sustainable nature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!