Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Generative AI is designed to create new content from trained parameters. Learning from large amounts of data, many of these models aim to simulate human conversation. Generative AI is being applied to many different sectors. Within healthcare there has been innovation specifically towards generative AI models trained on electronic medical record data. A recent review characterizes these models, their strengths, and weaknesses. Inspired by that work, we present our evaluation checklist for generative AI models applied to electronic medical records.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920625 | PMC |
http://dx.doi.org/10.1038/s41746-023-00988-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!