A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamic performance of rotor-side nonlinear control technique for doubly-fed multi-rotor wind energy based on improved super-twisting algorithms under variable wind speed. | LitMetric

The paper proposes a nonlinear controller called dual super-twisting sliding mode command (DSTSMC) for controlling and regulating the rotor side converter (RSC) of multi-rotor wind power systems that use doubly-fed induction generators. It was proposed that this controller be developed as an alternative to the direct power control (DPC), which makes use of a pulse width modulation (PWM) strategy to regulate the RSC's functioning. Overcoming the power/current quality issue with the proposed technique (DPC-DSTSMC-PWM) is characterized by great robustness and excellent performance. The designed strategy was contrasted with the standard method of control and other methods already in use. So, the unique proposed control strategy's robustness, performance, efficiency, and efficacy in enhancing system characteristics were tested and validated in Matlab/Simulink. In both tests, the proposed method resulted in significant improvements, reducing active power ripples by 83.33%, 57.14%, and 48.57% in the proposed tests. When compared with the traditional regulation method, the reduction rates of reactive power ripples are 64.06%, 52.47%, and 68.7% in the tests. However, in contrast to the conventional method, the proposed tests showed a decrease of between 72.46%, 50%, and 76.22% in the value of total harmonic distortion (THD) of the provided currents. These ratios show how effective the proposed plan is in ameliorating and enhancing aspects of the energy system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920820PMC
http://dx.doi.org/10.1038/s41598-024-55271-7DOI Listing

Publication Analysis

Top Keywords

multi-rotor wind
8
power ripples
8
proposed tests
8
proposed
7
dynamic performance
4
performance rotor-side
4
rotor-side nonlinear
4
control
4
nonlinear control
4
control technique
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!