RIOK3 sustains colorectal cancer cell survival under glucose deprivation via an HSP90α-dependent pathway.

Oncogenesis

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China.

Published: March 2024

Glucose oxidation via the pentose phosphate pathway serves as the primary cellular mechanism for generating nicotinamide adenine dinucleotide phosphate (NADPH). The central regions of solid tumors typically experience glucose deficiency, emphasizing the need for sustained NADPH production crucial to tumor cell survival. This study highlights the crucial role of RIOK3 in maintaining NADPH production and colorectal cancer (CRC) cell survival during glucose deficiency. Our findings revealed upregulated RIOK3 expression upon glucose deprivation, with RIOK3 knockout significantly reducing cancer cell survival. Mechanistically, RIOK3 interacts with heat shock protein 90α (HSP90α), a chaperone integral to various cellular processes, thereby facilitating HSP90α binding to isocitrate dehydrogenase 1 (IDH1). This interaction further upregulates IDH1 expression, enhancing NADPH production and preserving redox balance. Furthermore, RIOK3 inhibition had no discernible effect on intracellular NADPH levels and cell death rates in HSP90α-knockdown cells. Collectively, our findings suggest that RIOK3 sustains colon cancer cell survival in low-glucose environments through an HSP90α-dependent pathway. This highlights the significance of the RIOK3-HSP90α-IDH1 cascade, providing insights into potential targeted therapeutic strategies for CRC in metabolic stress conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10920805PMC
http://dx.doi.org/10.1038/s41389-024-00514-5DOI Listing

Publication Analysis

Top Keywords

cell survival
20
cancer cell
12
nadph production
12
riok3 sustains
8
colorectal cancer
8
survival glucose
8
glucose deprivation
8
hsp90α-dependent pathway
8
glucose deficiency
8
riok3
7

Similar Publications

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

Background: We aim to comprehensively analyze and validate the prognostic efficacy of tetraspanin 4 (TSPAN4) and several other migrasome-related markers in hepatocellular carcinoma (HCC).

Methods: The expression, diagnostic, and prognostic efficacy of five migrasome-related genes in HCC were analyzed using several databases. Five pairs of adjacent non-tumor tissues and HCC tissues were used to validate the expression.

View Article and Find Full Text PDF

Innovative capsulation and microencapsulation of plant hormones: a strategy to combat plant pathogens.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.

One of the prevailing trends in contemporary agriculture is the application of biological control. Nevertheless, several reports suggest that biocontrol bacteria exhibit poor survival rates in host plants. Consequently, the concept of shielding biological control agents by encapsulating them in outer coatings has gained popularity.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!