Copper affects virulence and diverse phenotypes of uropathogenic Proteus mirabilis.

J Microbiol Immunol Infect

Department and Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan. Electronic address:

Published: June 2024

Background: Copper plays a role in urinary tract infection (UTI) and urinary copper content is increased during Proteus mirabilis UTI. We therefore investigated the effect of copper on uropathogenic P. mirabilis and the underlying mechanisms, focusing on the virulence associated aspects.

Methods: Mouse colonization, swarming/swimming assays, measurement of cell length, flagellin level and urease activity, adhesion/invasion assay, biofilm formation, killing by macrophages, oxidative stress susceptibility, OMPs analysis, determination of MICs and persister cell formation, RT-PCR and transcriptional reporter assay were performed.

Results: We found that copper-supplemented mice were more resistant to be colonized in the urinary tract, together with decreased swarming/swimming, ureases activity, expression of type VI secretion system and adhesion/invasion to urothelial cells and increased killing by macrophages of P. mirabilis at a sublethal copper level. However, bacterial biofilm formation and resistance to oxidative stress were enhanced under the same copper level. Of note, the presence of copper led to increased ciprofloxacin MIC and more persister cell formation against ampicillin. In addition, the presence of copper altered the outer membrane protein profile and triggered expression of RcsB response regulator. For the first time, we unveiled the pleiotropic effects of copper on uropathogenic P. mirabilis, especially for induction of bacterial two-component signaling system regulating fitness and virulence.

Conclusion: The finding of copper-mediated virulence and fitness reinforced the importance of copper for prevention and therapeutic interventions against P. mirabilis infections. As such, this study could facilitate the copper-based strategies against UTI by P. mirabilis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmii.2024.02.007DOI Listing

Publication Analysis

Top Keywords

copper
10
proteus mirabilis
8
urinary tract
8
copper uropathogenic
8
uropathogenic mirabilis
8
biofilm formation
8
killing macrophages
8
oxidative stress
8
persister cell
8
cell formation
8

Similar Publications

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

The present study demonstrates the synthesis of compact ZnO layers using CdS sensitized on ZnO as a photoanode with copper sulfide (CuS) and carbon as a counter electrode (CE). In this study, a compact ZnO layer was fabricated using the simple and low-cost successive ionic layer adsorption and reaction (SILAR) method, and CuS CE films were synthesized using the chemical bath deposition method. Various characterizations, such as X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), confirmed the formation of ZnO and CdS sensitizations on the ZnO .

View Article and Find Full Text PDF

Assessing metal-induced glycation in French fries.

Metallomics

December 2024

Department of Environmental and Physical Sciences, Faculty of Science.

Non-enzymatic glycation is the chemical reaction between the amine group of an amino acid and the carbonyl group of a reducing sugar. The final products of this reaction, advanced glycation end-products (AGEs), are known to play a key role in aging and many chronic diseases. The kinetics of the AGE formation reaction depends on several factors, including pH, temperature, and the presence of prooxidant metals, such as iron and copper.

View Article and Find Full Text PDF

The present experimental study aimed to assess the wound healing and anti-inflammatory effects of green synthesized copper nanoparticles (CuNPs) by the methanol extract of (Boiss), as a plant with various pharmacological effects, such as anti-inflammatory and antimicrobial effects, in traditional and modern medicine. The precipitation approach was used for the green synthesis of CuNPs by mixing the methanol and copper sulfate solution. Cell viability and fibroblast proliferation assay were performed by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!