Cyclin-dependent kinase 6 (CDK6) participates in numerous signalling pathways and regulates various physiological processes. Due to its unique structural features and promising therapeutic potential, CDK6 has emerged as a drug target for designing and developing small-molecule inhibitors for anti-cancer therapeutics and other CDK6-associated diseases. The current study evaluates binding affinity and the inhibitory potential of rutin for CDK6 to develop a proof of concept for rutin as a potent CDK6 inhibitor. Molecular docking and 200 ns all-atom simulations reveal that rutin binds to the active site pocket of CDK6, forming interactions with key residues of the binding pocket. In addition, the CDK6-rutin complex remains stable throughout the simulation trajectory. A high binding constant (Ka = 7.6 × 10M) indicates that rutin has a strong affinity for CDK6. Isothermal titration calorimetry has further validated a strong binding of rutin with CDK6 and its spontaneous nature. The kinase activity of CDK6 is significantly inhibited by rutin with an IC value of 3.10 μM. Our findings highlight the significant role of rutin in developing potential therapeutic molecules to manage cancer and CDK6-associated diseases via therapeutic targeting of CDK6.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.130624DOI Listing

Publication Analysis

Top Keywords

cdk6
9
therapeutic potential
8
rutin
8
potential rutin
8
cyclin-dependent kinase
8
binding affinity
8
cdk6-associated diseases
8
rutin cdk6
8
binding
5
exploring therapeutic
4

Similar Publications

The phosphorylation of residue T177 produces a significant effect on the conformational dynamics of CDK6. Gaussian accelerated molecular dynamics (GaMD) simulations followed by deep learning (DL) are applied to explore the molecular mechanism of the phosphorylation-mediated effect on the conformational dynamics of CDK6 bound by three inhibitors 6ZV, 6ZZ and 0RS, in which 6ZV and 6ZZ have been used to test clinical performance. The DL finds that the β-sheets, αC helix as well as the T-loop are involved in obvious differences of conformation contacts and suggests that the T-loop plays a key role in the function of CDK6.

View Article and Find Full Text PDF

Schisandrin B targets CDK4/6 to suppress proliferation and enhance radiosensitivity in nasopharyngeal carcinoma by inducing cell cycle arrest.

Sci Rep

March 2025

The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Affiliated Zhongshan Hospital of Dalian University, No.6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.

Nasopharyngeal carcinoma (NPC) is notably prevalent in East and Southeast Asia, where despite advancements in radiotherapy leading to high control rates, challenges like radioresistance and collateral tissue damage remain significant. While Schisandrin B (SchB) has been demonstrated antitumor effects in various tumors, its efficacy in NPC remains unexplored. In this study, we explored the antitumor potential of Sch B on NPC, particularly its effects on cell proliferation and radiosensitivity.

View Article and Find Full Text PDF

CDK4 selective inhibition improves preclinical anti-tumor efficacy and safety.

Cancer Cell

March 2025

Pfizer Global Research and Development La Jolla, 10770 Science Center Drive, San Diego, CA 92121, USA. Electronic address:

CDK4/6 inhibitors have revolutionized treatment of hormone receptor positive (HR+), HER2 non-amplified (HER2-) breast cancer. Yet, all "dual" CDK4/6 inhibitors show common dose-limiting hematologic toxicities, foremost neutropenia. This poses challenges to provide these agents at concentrations necessary to extinguish cell cycling in tumors.

View Article and Find Full Text PDF

A CDK4-selective inhibitor puts the brakes on cancer cells.

Cancer Cell

March 2025

Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:

In this issue of Cancer Cell, Palmer et al. describe the discovery and preclinical testing of the first-in-class CDK4-selective inhibitor atirmociclib. By sparing CDK6, atirmociclib has the potential to ameliorate dose-limiting hematological toxicities that limit drug exposure and treatment continuity and, by extension, the antitumor efficacy of dual CDK4/6 inhibitors.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is the second most common cancer in men and third in females, a heterogeneous disease involving multistep mechanisms that represents 10% of all cancers globally. This study investigates gene mutation profiling in CRC using Next-Generation sequencing machine.

Method: Formalin-fixed paraffin-embedded tissues of 30 CRC patients were retrieved and reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!