Spartina alterniflora invasion decouples multiple elements in coastal wetland soils.

Sci Total Environ

State Key Laboratory of Black Soils Conservation and Utilization, Institute of Northeast Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130012, China.

Published: May 2024

Deciphering the biogeochemical coupling of multiple elements in soils could better mechanistic understanding of ecosystem stability response to the alien invasion. The coupling of 45 elements in soils from wetlands covered by Spartina alterniflora (Sa) was compared with that in soils covered by native Phragmites australis (Pa) in coastal regions of China. Results showed that S. alterniflora invasion not only significantly reshaped geochemical enrichment and dispersion states, but also decoupled the coupling of multiple elements in soils compared with Pa. Atomic mass emerged as the primary factor governing the coupling of multiple elements, of which a significantly positive correlation exhibited between atomic mass with elemental coupling in Pa, but no such relation was observed in SaThe coupling of lighter elements was more susceptible to and generally enhanced by the invasion of S. alterniflora compared to the heavier, of which carbon, iron (Fe), and cadmium (Cd) had the highest susceptibility. Besides atomic mass, biological processes (represented by soil organic carbon, nitrogen, phosphorus, and sulfur), interactions between sea and land (represented by salinity and pH), and their combination explained 17 %, 10 %, and 13 % variation in the coupling of multiple elements, respectively. The present work confirmed that S. alterniflora invasion was the important factor driving soil multi-element cycling and covariation in coastal wetlands.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.171502DOI Listing

Publication Analysis

Top Keywords

multiple elements
20
coupling multiple
16
alterniflora invasion
12
elements soils
12
atomic mass
12
spartina alterniflora
8
alterniflora compared
8
elements
7
coupling
7
invasion
5

Similar Publications

Sensors are indispensable tools of modern life that are ubiquitously used in diverse settings ranging from smartphones and autonomous vehicles to the healthcare industry and space technology. By interfacing multiple sensors that collectively interact with the signal to be measured, one can go beyond the signal-to-noise ratios (SNR) attainable by the individual constituting elements. Such techniques have also been implemented in the quantum regime, where a linear increase in the SNR has been achieved via using entangled states.

View Article and Find Full Text PDF

Background/aim: Hydrogen therapy has demonstrated potential as an antioxidant and anti-inflammatory intervention, particularly in the management of chronic diseases such as chronic kidney disease (CKD) and autoimmune conditions. This case report presents the possible therapeutic benefits of molecular hydrogen capsule treatment in enhancing renal function and alleviating chronic fatigue in an elderly female with coronary artery disease (CAD), type 2 diabetes mellitus (DM) complicated by nephropathy, and systemic lupus erythematosus (SLE). The aim of this study was to investigate the efficacy of adjunctive hydrogen therapy in an elderly patient with multiple chronic comorbidities.

View Article and Find Full Text PDF

Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.

View Article and Find Full Text PDF

Background/aim: Ovarian cancer (OC) is one of the leading gynecological causes of death among women. The current standard treatment for OC is debulking surgery followed by platinum-based chemotherapy treatments; however, despite initial success to treatment many patients experience relapses. Currently, there are no available tests to predict sensitivity or resistance to chemotherapy.

View Article and Find Full Text PDF

Aims: The "2 to 10% strain rule" for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!