Sex-specific Stone-forming Phenotype in Mice During Hypercalciuria/Urine Alkalinization.

Lab Invest

Calcium Signaling Laboratory, Research Service, Veterans Affairs Medical Center, Washington, DC; Department of Biomedical Engineering, The Catholic University of America, Washington DC; Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Washington DC. Electronic address:

Published: May 2024

Sex differences in kidney stone formation are well known. Females generally have slightly acidic blood and higher urine pH when compared with males, which makes them more vulnerable to calcium stone formation, yet the mechanism is still unclear. We aimed to examine the role of sex in stone formation during hypercalciuria and urine alkalinization through acetazolamide and calcium gluconate supplementation, respectively, for 4 weeks in wild-type (WT) and moderately hypercalciuric [TRPC3 knockout [KO](-/-)] male and female mice. Our goal was to develop calcium phosphate (CaP) and CaP+ calcium oxalate mixed stones in our animal model to understand the underlying sex-based mechanism of calcium nephrolithiasis. Our results from the analyses of mice urine, serum, and kidney tissues show that female mice (WT and KO) produce more urinary CaP crystals, higher [Ca], and pH in urine compared to their male counterparts. We identified a sex-based relationship of stone-forming phenotypes (types of stones) in our mice model following urine alkalization/calcium supplementation, and our findings suggest that female mice are more susceptible to CaP stones under those conditions. Calcification and fibrotic and inflammatory markers were elevated in treated female mice compared with their male counterparts, and more so in TRPC3 KO mice compared with their WT counterparts. Together these findings contribute to a mechanistic understanding of sex-influenced CaP and mixed stone formation that can be used as a basis for determining the factors in sex-related clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103239PMC
http://dx.doi.org/10.1016/j.labinv.2024.102047DOI Listing

Publication Analysis

Top Keywords

stone formation
16
female mice
16
mice
8
urine compared
8
compared male
8
male counterparts
8
mice compared
8
urine
5
calcium
5
sex-specific stone-forming
4

Similar Publications

Background: The trend of gallstones occurring in younger populations has become a noteworthy public health issue. This study aims to investigate the association between complete blood cell count (CBC)-derived inflammatory indicators and gallstones in adults under 60 years of age in the United States.

Methods: This cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020.

View Article and Find Full Text PDF

Pseudogenization of the Slc23a4 gene is necessary for the survival of Xdh-deficient mice.

Sci Rep

January 2025

Laboratory of Human Physiology and Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan.

In most patients with type 1 xanthinuria caused by mutations in the xanthine dehydrogenase gene (XDH), no clinical complications, except for urinary stones, are observed. In contrast, all Xdh(- / -) mice die due to renal failure before reaching adulthood at 8 weeks of age. Hypoxanthine or xanthine levels become excessive and thus toxic in Xdh(- / -) mice because enhancing the activity of hypoxanthine phosphoribosyl transferase (HPRT), which is an enzyme that uses hypoxanthine as a substrate, slightly increases the life span of these mice.

View Article and Find Full Text PDF

Ensuring the mechanical performance of backfill materials while reducing cementation costs is a key challenge in mine backfill research. To address this, fiber materials such as polypropylene (PP) fiber and rice straw (RS) fiber have been incorporated into cement-based mixtures for mine backfilling. This study investigates the effects of PP and RS fibers on the mechanical properties, flow characteristics, and microstructure of Tailings and Wasted Stone Mixed Backfill (TWSMB).

View Article and Find Full Text PDF

For the exploration and development of oil and gas reservoirs in shallow, cold regions and deep oceans, oil well cement (OWC) pastes face the challenge of slow cement hydration reactions and the low early-strength development of cement stone at low temperatures, which can cause the risk of fluid channeling and the defective isolation of the sealing section during the cementing construction process. To address the above challenges, a nanoscale hydrated calcium silicate (C-S-H) crystal nucleus, DRA-1L, was synthesized. Its application performance and action mechanism were studied.

View Article and Find Full Text PDF

Cellular senescence is a state of permanent cell cycle arrest accompanied by metabolic activity and characteristic phenotypic changes. This process is crucial for developing age-related diseases, where excessive calorie intake accelerates metabolic dysfunction and aging. Overnutrition disturbs key metabolic pathways, including insulin/insulin-like growth factor signaling (IIS), the mammalian target of rapamycin (mTOR), and AMP-activated protein kinase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!