Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2024.116300 | DOI Listing |
Front Pharmacol
January 2025
Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Background: For patients with epilepsy, antiseizure medication remains the primary treatment; however, it is ineffective in approximately 30% of cases. These patients experience progressive neuronal damage and poor outcomes. Therefore, there is an urgent need for disease-modifying therapy (DMT) that targets the pathogenesis of epilepsy.
View Article and Find Full Text PDFAnn Hepatol
January 2025
Department of Gastroenterology, Xinhua Hospital of zhejiang Province: The Second Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, China. Electronic address:
Non-alcoholic fatty liver disease (NAFLD), now recognized as metabolic dysfunction-associated steatotic liver disease (MASLD), represents a significant and escalating global health challenge. Its prevalence is intricately linked to obesity, insulin resistance, and other components of the metabolic syndrome. As our comprehension of MASLD deepens, it has become evident that this condition extends beyond the liver, embodying a complex, multi-systemic disease with hepatic manifestations that mirror the broader metabolic landscape.
View Article and Find Full Text PDFIran J Pharm Res
June 2024
Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Insulin resistance is an important pathological hallmark of Parkinson's disease (PD). Proinflammatory cytokines during neuroinflammation decrease insulin sensitivity by suppressing insulin signaling elements. Toll-like receptor 4 (TLR4), the main receptor involved in neuroinflammation, is also associated with the pathogenesis of PD.
View Article and Find Full Text PDFCureus
December 2024
School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, IND.
Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.
View Article and Find Full Text PDFUnlabelled: Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. Toll-like receptors (TLRs) are present on gingival epithelial cells and recognize pathogen-associated molecular patterns (PAMPs) on pathogenic bacteria, induce the secretion of proinflammatory cytokines, and initiate innate and adaptive antigen-specific immune responses to eradicate the invading microbes. Since PD is a chronic inflammatory disease, TLR2/TLR4 plays a vital role in disease pathogenesis and maintaining the periodontium during health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!