Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133943 | DOI Listing |
Environ Microbiol
January 2025
Institute for Biological Sciences, Applied Ecology and Phycology, University Rostock, Rostock, Germany.
Streptofilum capillatum was recently described and immediately caught scientific attention, because it forms a phylogenetically deep branch in the streptophytes and is characterised by a unique cell coverage composed of piliform scales. Its phylogenetic position and taxonomic rank are still controversial discussed. In the present study, we isolated further strains of Streptofilum from biocrusts in sand dunes and Arctic tundra soil.
View Article and Find Full Text PDFmSystems
January 2025
U.S. Geological Survey, Geology, Minerals, Energy, and Geophysics Science Center, Moffett Field, Moffett Field, California, USA.
Climate change is inducing wide-scale permafrost thaw in the Arctic and subarctic, triggering concerns that long-dormant pathogens could reemerge from the thawing ground and initiate epidemics or pandemics. Viruses, as opposed to bacterial pathogens, garner particular interest because outbreaks cannot be controlled with antibiotics, though the effects can be mitigated by vaccines and newer antiviral drugs. To evaluate the potential hazards posed by viral pathogens emerging from thawing permafrost, we review information from a diverse range of disciplines.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institute for Biological Sciences, University of Rostock, 18059 Rostock, Germany.
Biological soil crusts are integral to Arctic ecosystems, playing a crucial role in primary production, nitrogen fixation and nutrient cycling, as well as maintaining soil stability. However, the composition and complex relationships between the diverse organisms within these biocrusts are not well studied. This study investigates how the microbial community composition within Arctic biocrusts is influenced by environmental factors along an altitudinal gradient (101 m to 314 m).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
Cold-adapted microorganisms possess cold-active enzymes with potential applications in different industries and research areas. In this study, two genes encoding β-d-galactosidases belonging to Glycoside Hydrolase families 2 and 42 from the psychrotolerant Arctic bacterium sp. S3* were cloned, expressed in and , purified and characterized.
View Article and Find Full Text PDFNat Commun
January 2025
Climate and Ecosystem Sciences Division, Berkeley Lab, Berkeley, CA, USA.
Climate warming may accelerate decomposition of Arctic soil carbon, but few controlled experiments have manipulated the entire active layer. To determine surface-atmosphere fluxes of carbon dioxide and methane under anticipated end-of-century warming, here we used heating rods to warm (by 3.8 °C) to the depth of permafrost in polygonal tundra in Utqiaġvik (formerly Barrow), Alaska and measured fluxes over two growing seasons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!