SWCNTs/PEDOT:PSS nanocomposites-modified microelectrode arrays for revealing locking relations between burst and local field potential in cultured cortical networks.

Biosens Bioelectron

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Science, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100149, China. Electronic address:

Published: June 2024

AI Article Synopsis

  • Burst and local field potential (LFP) are essential to understanding brain activity, with bursts representing fast rhythms and LFP representing slower ones.
  • The study created high-performance microelectrode arrays (MEAs) using SWCNTs/PEDOT:PSS nanocomposites, which showcased excellent electrical properties for examining burst-LFP interactions in cultured cortical networks.
  • Results indicated that increased glycine concentrations modified burst firing patterns, enhancing time-locking between burst and LFP while decreasing neuronal synchrony, offering insights into potential treatments for neurological disorders linked to abnormal rhythms.

Article Abstract

Burst and local field potential (LFP) are fundamental components of brain activity, representing fast and slow rhythms, respectively. Understanding the intricate relationship between burst and LFP is crucial for deciphering the underlying mechanisms of brain dynamics. In this study, we fabricated high-performance microelectrode arrays (MEAs) using the SWCNTs/PEDOT:PSS nanocomposites, which exhibited favorable electrical properties (low impedance: 12.8 ± 2.44 kΩ) and minimal phase delay (-11.96 ± 1.64°). These MEAs enabled precise exploration of the burst-LFP interaction in cultured cortical networks. After a 14-day period of culture, we used the MEAs to monitor electrophysiological activities and revealed a time-locking relationship between burst and LFP, indicating the maturation of the neural network. To further investigate this relationship, we modulated burst firing patterns by treating the neural culture with increasing concentrations of glycine. The results indicated that glycine effectively altered burst firing patterns, with both duration and spike count increasing as the concentration rose. This was accompanied by an enhanced level of time-locking between burst and LFP but a decrease in synchrony among neurons. This study not only highlighted the pivotal role of SWCNTs/PEDOT:PSS-modified MEAs in elucidating the interaction between burst and LFP, bridging the gap between slow and fast brain rhythms in vitro but also provides valuable insights into the potential therapeutic strategies targeting neurological disorders associated with abnormal rhythm generation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.116168DOI Listing

Publication Analysis

Top Keywords

burst lfp
16
microelectrode arrays
8
burst
8
burst local
8
local field
8
field potential
8
cultured cortical
8
cortical networks
8
relationship burst
8
burst firing
8

Similar Publications

Unraveling the neural signatures: Distinct pallidal patterns in dystonia subtypes.

Parkinsonism Relat Disord

November 2024

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA; Neurological Institute, University Hospitals, Cleveland, OH, USA; Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. Electronic address:

Introduction: Dystonia manifests as slow twisting movements (pure dystonia) or repetitive, jerky motions (jerky dystonia). Dystonia can coexist with myoclonus (myoclonus dystonia) or tremor (tremor dystonia). Each of these presentations can have distinct etiology, can involve discrete sensorimotor networks, and may have characteristic neurophysiological signature.

View Article and Find Full Text PDF

The aim of this study is to investigate the differential impacts of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on neural circuit dynamics and neuronal firing in the hippocampal CA1 subregion (CA1) region and medial entorhinal cortex (MEC) of mice. Forty-two male ICR mice were randomized into control, HIIT, and MICT groups. Electrophysiological recordings were performed pre- and postintervention to assess neural circuit dynamics and neuronal firing patterns in the CA1-MEC pathway.

View Article and Find Full Text PDF

Low-intensity pulsed ultrasound stimulation (LIPUS) as a non-invasive, high-spatial resolution and high penetration depth brain modulation technology has been used for modulating neuromuscular function. However, the modulation of neural electrical signal changes in the neuromuscular system by LIPUS remains to be explored. In this study, we stimulated the mouse brain motor cortex by LIPUS with different number of tone burst (NTB) and recorded the local field potential (LFP) signals of the target region and electromyography (EMG) of tail muscle.

View Article and Find Full Text PDF

Parkinson's disease (PD) has been associated with pathological neural activity within the basal ganglia. Herein, we analyzed resting-state single-neuron and local field potential (LFP) activities from people with PD who underwent awake deep brain stimulation surgery of the subthalamic nucleus (STN; n = 125) or globus pallidus internus (GPi; n = 44), and correlated rate-based and oscillatory features with UPDRSIII off-medication subscores. Rate-based single-neuron features did not correlate with PD symptoms.

View Article and Find Full Text PDF

Background: The mechanisms underlying central fatigue (CF) induced by high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are still not fully understood.

Methods: In order to explore the effects of these exercises on the functioning of cortical and subcortical neural networks, this study investigated the effects of HIIT and MICT on local field potential (LFP) and neuronal firing in the mouse primary motor cortex (M1) and hippocampal CA1 areas. HIIT and MICT were performed on C57BL/6 mice, and simultaneous multichannel recordings were conducted in the M1 motor cortex and CA1 hippocampal region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!