AI Article Synopsis

  • The overuse of antibiotics has led to microbial resistance, creating a pressing need for new, effective antibiotics.
  • The study focuses on the fungal metabolite diplopyrone C, which shows promising antimicrobial and antibiofilm properties against Candida albicans and Klebsiella pneumoniae.
  • A detailed analytical strategy was developed to isolate and evaluate diplopyrone C's effects, providing insights into its potential for drug development from natural sources.

Article Abstract

Seen initially as wonder drugs, the widespread and often inappropriate use of antibiotics led to the development of microbial resistances. As a result, a true emergency has arisen, and a significant need has emerged to discover and develop new safe and valuable antibiotics. The captivating chemical structure of the fungal metabolite diplopyrone C has caught our attention as an excellent candidate for a circumstantial study aimed at revealing its antimicrobial and antibiofilm activities. In this work, we describe the full analytical strategy from the isolation/identification to the evaluation of the metabolomics effect on target microorganisms of this fungal metabolite. Our results show interesting antimicrobial and antibiofilm activities of diplopyrone C against two frequently isolated nosocomial pathogens (i.e., the fungus Candida albicans and the gram-negative bacterium Klebsiella pneumoniae). Moreover, a GC-MS based metabolomics footprinting approach gave an insight into the uptake and excretion of metabolites from and into the culture medium as a response to the presence of this active substance. The workflow employed in this study is suitable to exploit natural resources for the search of lead compounds for drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2024.116081DOI Listing

Publication Analysis

Top Keywords

fungal metabolite
12
metabolomics footprinting
8
footprinting approach
8
metabolite diplopyrone
8
antimicrobial antibiofilm
8
antibiofilm activities
8
approach gc-ms
4
gc-ms study
4
study inhibitory
4
inhibitory effects
4

Similar Publications

Turmeric is affected by various phytopathogens, which cause huge economic losses to farmers. In the present study, ten isolates of Pythium spp. were isolated from infected turmeric rhizomes and characterized.

View Article and Find Full Text PDF

Pantoea agglomerans is one of four Pantoea species reported in the USA to cause bacterial rot of onion bulbs. However, not all P. agglomerans strains are pathogenic to onion.

View Article and Find Full Text PDF

GlnA3 is able to glutamylate spermine but it is not essential for the detoxification of spermine in .

J Bacteriol

January 2025

Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.

Unlabelled: is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of , the pathogen needs strategies to cope with these toxic metabolites. The actinomycete , a close relative of makes use of a gamma-glutamylation pathway to functionally neutralize spermine.

View Article and Find Full Text PDF

Introduction: strain NQ8GII4 is an endophytic fungus with significant potential for improving growth and disease resistance of alfalfa. However, the molecular mechanisms underlying the symbiotic relationship between NQ8GII4 and alfalfa roots remain poorly understood.

Methods: In this study, we conducted (1) a comparative genomic analysis of selected saprophytic, pathogenic, and endophytic fungi, including molecular phylogeny analysis, whole-genome alignment, and divergence date estimation positioning, and (2) transcriptomic profiling of alfalfa roots infected with NQ8GII4.

View Article and Find Full Text PDF

Discovery and Characterization of a Fungal N-acetylglucosamine Transferase in the Biosynthesis of Furanone Glycosides.

J Nat Prod

January 2025

Key Laboratory of Marine Drugs Ministry of Education; School of Medicine and Pharmacy; Sanya Oceanographic Institute, Ocean University of China, Qingdao/Sanya 266100, People's Republic of China.

Malfilamentosides are a class of fungal secondary metabolites characterized by glycosylated furanone scaffold; however, the enzyme that catalyzes the -glycosylation of the furanone core with -acetylglucosamine (GlcNAc) has not yet been identified. In this study, we discovered and identified the biosynthetic gene cluster of the malfilamentosides. and investigations revealed that a glycosyltransferase, MftB, catalyzes the -glycosylation of the furanone scaffold with GlcNAc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!