Co-assembly of Amphiphilic Triblock Copolymers with Nanodrugs and Drug Release Kinetics in Solution.

J Phys Chem B

Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Published: March 2024

Polymeric vesicles present great potential in disease treatment as they can be featured as a structurally stable and easily functionalized drug carrier that can simultaneously encapsulate multiple drugs and release them on-demand. Based on the dissipative particle dynamics (DPD) simulation, the drug-loaded vesicles were designed by the co-assembly process of linear amphiphilic triblock copolymers and hydrophobic nanodrugs in solvents, and most importantly, the drug release behavior of drug-loaded vesicles were intensively investigated. The drug-loaded aggregates, such as vesicles, spherical micelles, and disk-like micelles, were observed by varying the size and concentration of nanodrugs and the length of the hydrophobic block. The distribution of nanodrugs in the vesicles was intensively analyzed. As the size of the nanodrugs increases, the localization of nanodrugs change from being unable to fully wrap in the vesicle wall to the uniform distribution and finally to the aggregation in the vesicles at the fixed concentration of nanodrugs. The membrane thickness of the drug-loaded polymeric vesicle can be increased, and the nanodrugs localized closer to the center of the vesicle by increasing the length of the hydrophobic block. The nanodrugs will be released from vesicles by varying the interactions between the nanodrug and the solvent or the hydrophobic block and the solvent, respectively. We found that the release kinetics conforms to the first-order kinetic model, which can be used to fit the cumulative release rate of nanodrugs over time. The results showed that increasing the size of nanodrugs, the length of hydrophobic block, and the interaction parameters between the hydrophobic block and the solvent will slow down the release rate of the nanodrug and change the drug release process from monophasic to biphasic release model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.4c00230DOI Listing

Publication Analysis

Top Keywords

hydrophobic block
20
drug release
12
length hydrophobic
12
nanodrugs
11
amphiphilic triblock
8
triblock copolymers
8
release
8
release kinetics
8
drug-loaded vesicles
8
vesicles intensively
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!