Weeds are increasingly documented with evolved resistance to herbicides globally. Three species have been reported as resistant in maize crops in New Zealand: Chenopodium album to atrazine and dicamba, Persicaria maculosa to atrazine and Digitaria sanguinalis to nicosulfuron. Despite knowledge of these cases, the distribution of these resistant biotypes is unknown. This study aimed to determine the prevalence of known resistant weeds in major maize growing areas in New Zealand, and to pro-actively screen other species for resistance. Weed seeds of broadleaf and grass species were collected from 70 randomly selected maize growing farms in the North Island in 2021-2022. Seeds were grown and treated with herbicides at recommended field rates. Atrazine-resistant C. album were recorded in a third of surveyed farms and nicosulfuron-resistant D. sanguinalis in a sixth. Half of Waikato farms and a quarter of Bay of Plenty farms (no Hawkes Bay or Wellington farms) had atrazine-resistant C. album. Dicamba-resistant C. album were not detected, nor were atrazine-resistant P. maculosa. Nicosulfuron resistant D. sanguinalis was recorded in 19% of Waikato farms, 6% of Bay of Plenty farms and 9% of Hawkes Bay farms (no Wellington farms). Amaranthus spp., Fallopia convolvulus, Persicaria spp., Solanum spp., Echinochloa crus-galli, Panicum spp. and Setaria spp. were not resistant to any of the herbicides tested. Twenty-nine to 52% of maize farms in the North Island are estimated to have herbicide resistant weeds. Resistance is common in maize farms in Waikato and western Bay of Plenty. Resistance is rare in southern regions, with only one instance of nicosulfuron-resistant D. sanguinalis and no resistant C. album. Most annual weeds in maize are not resistant to herbicides; although atrazine resistant C. album is widespread, it is currently controlled with alternative herbicides. Resistant D. sanguinalis appears to be an emerging problem.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10919694 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299539 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!