The success of bacterial pathogens depends on the coordinated expression of virulence determinants. Regulatory circuits that drive pathogenesis are complex, multilayered, and incompletely understood. Here, we reveal that alterations in tRNA modifications define pathogenic phenotypes in the opportunistic pathogen . We demonstrate that the enzymatic activity of GidA leads to the introduction of a carboxymethylaminomethyl modification in selected tRNAs. Modifications at the wobble uridine base (cmnmU) of the anticodon drives translation of transcripts containing rare codons. Specifically, in the presence of GidA-dependent tRNA modifications modulates expression of genes encoding virulence regulators, leading to a cellular proteomic shift toward pathogenic and well-adapted physiological states. Our approach of profiling the consequences of chemical tRNA modifications is general in concept. It provides a paradigm of how environmentally driven tRNA modifications govern gene expression programs and regulate phenotypic outcomes responsible for bacterial adaption to challenging habitats prevailing in the host niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945773PMC
http://dx.doi.org/10.1073/pnas.2312874121DOI Listing

Publication Analysis

Top Keywords

trna modifications
16
opportunistic pathogen
8
trna
5
modifications
5
trna epitranscriptome
4
epitranscriptome determines
4
determines pathogenicity
4
pathogenicity opportunistic
4
pathogen success
4
success bacterial
4

Similar Publications

Quantitative RNA pseudouridine maps reveal multilayered translation control through plant rRNA, tRNA and mRNA pseudouridylation.

Nat Plants

January 2025

Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.

Pseudouridine (Ψ) is the most abundant RNA modification, yet studies of Ψ have been hindered by a lack of robust methods to profile comprehensive Ψ maps. Here we utilize bisulfite-induced deletion sequencing to generate transcriptome-wide Ψ maps at single-base resolution across various plant species. Integrating ribosomal RNA, transfer RNA and messenger RNA Ψ stoichiometry with mRNA abundance and polysome profiling data, we uncover a multilayered regulation of translation efficiency through Ψ modifications.

View Article and Find Full Text PDF

tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (mG) solely at position 27 of tRNA-Tyr-GUA.

View Article and Find Full Text PDF

The tRNA methyltransferase 1 (TRMT1) enzyme catalyzes the N2,N2-dimethylguanosine (m2,2G) modification in tRNAs. Intriguingly, vertebrates encode an additional tRNA methyltransferase 1-like (TRMT1L) paralog. Here, we use a comprehensive tRNA sequencing approach to decipher targets of human TRMT1 and TRMT1L.

View Article and Find Full Text PDF

Crystallographic analysis of the Escherichia coli tRNA seleno-modification enzyme in complex with tRNA.

Acta Crystallogr F Struct Biol Commun

February 2025

Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.

The bacterial enzyme tRNA 2-selenouridine synthase (SelU) catalyzes the conversion of 5-substituted 2-thiouridine (R5S2U) to 5-substituted 2-selenouridine (R5Se2U) at the wobble positions of several tRNAs. Seleno-modification potentially regulates translation efficiency in response to selenium availability. Notably, SelU uses the 2-geranylthiouridine (R5geS2U) intermediate for sulfur removal, and this geranylthiol (geS) is a unique leaving group among tRNA-maturation enzymes.

View Article and Find Full Text PDF

Lipoprotein(a) and Atrial Fibrillation: Mechanistic Insights and Therapeutic Approaches.

Int J Med Sci

January 2025

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People's Republic of China.

Elevated lipoprotein(a) [Lp(a)] levels are increasingly recognized as a significant risk factor for cardiovascular diseases and may also contribute to atrial fibrillation (AF). This review investigated the indirect mechanisms through which Lp(a) may influence AF, including proatherogenic, prothrombotic, and proinflammatory pathways. Traditional lipid-lowering therapies, such as lifestyle modifications and statins, have limited effects on Lp(a) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!