Engineering a Dual-Receptor Targeted Multivalent Probe for Enhanced Magnetic Resonance Imaging of Metastatic Cancer.

Anal Chem

Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.

Published: March 2024

Noninvasive monitoring of cancer metastasis is essential to improving clinical outcomes. Molecular MRI (mMRI) is a special implementation of noninvasive molecular imaging that promises to offer a powerful means for early detection and analysis of pathological states of cancer by tracking molecular markers. However, this is often hindered by the challenging issue of obtaining transformable mMRI contrast agents with high sensitivity, specificity, and broad applicability, given the high tumor heterogeneity and complex metastatic features. Herein, we present a dual-receptor targeted, multivalent recognition strategy and report a new class of mMRI probes for enhanced imaging of metastatic cancer. This probe is designed by covalently conjugating Gd-chelate with phenylboronic acid and an aptamer via an affordable polymerization chemistry to concurrently target two different cell-membrane receptors that are commonly overexpressed and highly implicated in both tumorigenesis and metastasis. Moreover, the polymerization chemistry allows the probe to contain a bunch of targeting ligands and signal reporters in a single chain, which not only leads to more than 2-fold enhancement in T relaxivity at 1.5 T compared to the commercial contrast agent but also enables it to actively target tumor cells in a multivalent recognition manner, contributing to a much higher imaging contrast than single-receptor targeted probes and the commercial agent in mouse models with lung metastases, yet without inducing systemic side effects. We expect this study to offer a useful molecular tool to promote transformable applications of mMRI and a better understanding of molecular mechanisms involved in cancer development.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c04036DOI Listing

Publication Analysis

Top Keywords

dual-receptor targeted
8
targeted multivalent
8
imaging metastatic
8
metastatic cancer
8
multivalent recognition
8
polymerization chemistry
8
cancer
5
molecular
5
engineering dual-receptor
4
multivalent probe
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!