A simple, low-cost, and environmentally benign process for synthesizing nanostructured NiO/NiAlO on multiple kinds of carbon nanostructures (CNS) is presented. This method develops polylactic acid (PLA) based waste plastic materials for the producing CNS. These composites (NiO@NiAlO/CNS) were examined as potential electrodes in supercapacitors (SC) as they exhibit good charge/discharge reversibility and provide adequate specific capacitance values with a maximum being 1984 F/g at 0.5 A g. It is noteworthy that the cycling stability of this sample at 10 A g maintained 101.7% of its initial capacity even after 5000 GCD cycles. An asymmetric supercapacitor (ASC) was built and analyzed, with NiO@NiAlO/CNS serving as the cathode and activated carbon serving as the anode of the device. The concluded device has an energy density of 58 Wh kg with a power density of 986 W kg and a SCs of 216.5 F/g. The results showed that the materials mentioned are a great option to use as electrode materials in applications involving the storage of energy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-32721-3DOI Listing

Publication Analysis

Top Keywords

electrode materials
8
polylactic acid-based
4
acid-based plastic
4
plastic activated
4
activated nialo
4
nialo nanoparticles
4
nanoparticles highly
4
highly active
4
active positive
4
positive electrode
4

Similar Publications

Lithium-tellurium (Li-Te) batteries are gaining attention as a promising next-generation energy storage system due to their superior electrical conductivity and high volumetric capacity compared to sulfur and selenium. Tellurium's unique properties, such as suitable redox potential, excellent conductivity, high volumetric capacity, and greatest stability, position it as a strong candidate for negative electrode materials. This study explores the potential of metal tellurides, specifically CuTe and FeTe monolayers, as effective tellurium host materials, leveraging their polar interactions with lithium polytellurides.

View Article and Find Full Text PDF

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/CuO with Ag Single Atoms to Drive CO Electroreduction.

Adv Mater

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.

Copper-based electrocatalysts are recognized as crucial catalysts for CO electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/CuO heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis.

View Article and Find Full Text PDF

The use of hydrogen as fuel presents many safety challenges due to its flammability and explosive nature, combined with its lack of color, taste, and odor. The purpose of this paper is to present an electrochemical sensor that can achieve rapid and accurate detection of hydrogen leakage. This paper presents both the component elements of the sensor, like sensing material, sensing element, and signal conditioning, as well as the electronic protection and signaling module of the critical concentrations of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!