A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dauer juvenile recovery transcriptome of two contrasting EMS mutants of the entomopathogenic nematode Heterorhabditis bacteriophora. | LitMetric

Dauer juvenile recovery transcriptome of two contrasting EMS mutants of the entomopathogenic nematode Heterorhabditis bacteriophora.

World J Microbiol Biotechnol

e-nema GmbH, Klausdorfer Str. 28-36, 24223, Schwentinental, Germany.

Published: March 2024

The entomopathogenic nematode Heterorhabditis bacteriophora, symbiotically associated with enterobacteria of the genus Photorhabdus, is a biological control agent against many insect pests. Dauer Juveniles (DJ) of this nematode are produced in industrial-scale bioreactors up to 100 m in liquid culture processes lasting approximately 11 days. A high DJ yield (> 200,000 DJ·mL) determines the success of the process. To start the mass production, a DJ inoculum proceeding from a previous monoxenic culture is added to pre-cultured (24 h) Photorhabdus bacteria. Within minutes after contact with the bacteria, DJ are expected to perceive signals that trigger their further development (DJ recovery) to reproductive hermaphrodites. A rapid, synchronized, and high DJ recovery is a key factor for an efficient culture process. In case of low percentage of DJ recovery, the final DJ yield is drastically reduced, and the amount of non-desired stages (males and non-fertilized females) hinders the DJ harvest. In a preliminary work, a huge DJ recovery phenotypic variability in H. bacteriophora ethyl methanesulphonate (EMS) mutants was determined. In the present study, two EMS-mutant lines (M31 and M88) with high and low recovery phenotypes were analyzed concerning their differences in gene expression during the first hours of contact with Photorhabdus supernatant containing food signals triggering recovery. A snapshot (RNA-seq analysis) of their transcriptome was captured at 0.5, 1, 3 and 6 h after exposure. Transcripts (3060) with significant regulation changes were identified in the two lines. To analyze the RNA-seq data over time, we (1) divided the expression profiles into clusters of similar regulation, (2) identified over and under-represented gene ontology categories for each cluster, (3) identified Caenorhabditis elegans homologous genes with recovery-related function, and (4) combined the information with available single nucleotide polymorphism (SNP) data. We observed that the expression dynamics of the contrasting mutants (M31 and M88) differ the most within the first 3 h after Photorhabdus supernatant exposure, and during this time, genes related to changes in the DJ cuticle and molting are more active in the high-recovery line (M31). Comparing the gene expression of DJ exposed to the insect food signal in the haemolymph, genes related to host immunosuppressive factors were not found in DJ upon bacterial supernatant exposure. No link between the position of SNPs associated with high recovery and changes in gene expression was determined for genes with high differential expression. Concerning specific transcripts, nine H. bacteriophora gene models with differential expression are provided as candidate genes for further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-024-03902-6DOI Listing

Publication Analysis

Top Keywords

gene expression
12
recovery
8
ems mutants
8
entomopathogenic nematode
8
nematode heterorhabditis
8
heterorhabditis bacteriophora
8
high recovery
8
m31 m88
8
photorhabdus supernatant
8
supernatant exposure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!