Monolayer transition metal dichalcogenide VTe exhibits multiple charge density wave (CDW) phases, mainly (4 × 4) and (4 × 1). Here we report facile dynamic and tens-of-nanometer scale switching between these CDW phases with gentle bias pulses in scanning tunneling microscopy. Bias pulses purposely stimulate a reversible random CDW symmetry change between the isotropic (4 × 4) and anisotropic (4 × 1) CDWs, as well as CDW phase slips and rotation. The switching threshold of ∼1.0 V is independent of bias polarity, and the switching rate varies linearly with the tunneling current. Density functional theory calculations indicate that a coherent CDW phase switching incurs an energy barrier of ∼2.0-3.0 eV per (4 × 4) unit cell. While there is a challenge in understanding the observed large-area CDW random fluttering, we provide some possible explanations. The ability to manipulate electronic CDW phases sheds new light on tailoring CDW properties on demand.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c00265DOI Listing

Publication Analysis

Top Keywords

cdw phases
12
charge density
8
density wave
8
cdw
8
bias pulses
8
cdw phase
8
switching
5
spatially extended
4
extended charge
4
wave switching
4

Similar Publications

Charge-density waves (CDWs) are correlated states of matter, in which the electronic density is modulated periodically due to electronic and phononic interactions. Often, CDW phases coexist with other correlated states, such as superconductivity, spin-density waves, or Mott insulators. Controlling CDW phases may, therefore, enable the manipulation of the energy landscape of these interacting states.

View Article and Find Full Text PDF

Current-Driven to Thermally Driven Multistep Phase Transition of Charge Density Wave Order in 1T-TaS.

Nano Lett

December 2024

State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, China.

Two-dimensional 1T-TaS is renowned for its exotic physical properties including superconductivity, Mott physics, flat-band electronics, and charge density wave (CDW) orders. In particular, the CDW phase transitions (PTs) in 1T-TaS attracted extensive research interest, showing prominent potential in electronic devices. However, mechanisms underlying electrically driven PTs remain elusive.

View Article and Find Full Text PDF

To successfully scale-up the production of bio-based building blocks through CO and H-based gas fermentation, it is crucial to deeply understand and control the microbial catalyst response to the bioreactor environment. This study investigates the effects of key process parameters, such as CO and H partial pressures, gas feeding strategies, and mixture composition, on the production pathways of an evolved Clostridium carboxidivorans strain. The ultimate goal is to optimize 1-hexanol production in elevated-pressure stirred-tank reactors.

View Article and Find Full Text PDF

Understanding the superconductivity and charge density wave interaction through quasi-static lattice fluctuations.

Proc Natl Acad Sci U S A

December 2024

Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.

In unconventional superconductors, coupled charge and lattice degrees of freedom can manifest in ordered phases of matter that are intertwined. In the cuprate family, fluctuating short-range charge correlations can coalesce into a longer-range charge density wave (CDW) order which is thought to intertwine with superconductivity, yet the nature of the interaction is still poorly understood. Here, by measuring subtle lattice fluctuations in underdoped YBaCuO on quasi-static timescales (thousands of seconds) through X-ray photon correlation spectroscopy, we report sensitivity to both superconductivity and CDW.

View Article and Find Full Text PDF

Origin of competing charge density waves in kagome metal ScVSn.

Nat Commun

November 2024

Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.

Understanding competing charge density wave (CDW) orders in the bilayer kagome metal ScVSn remains challenging. Experimentally, upon cooling, short-range order with wave vector forms, which is subsequently suppressed by the condensation of long-range CDW order at lower temperature. Theoretically, however, the q CDW is predicted as the ground state, leaving the CDW mechanism elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!