Effectiveness of inhibitors to prevent asphaltene aggregation: Insights from atomistic and molecular simulations.

J Chem Phys

Department of Materials Science and Engineering, Faculty of Mechanical Engineering (ME), Delft University of Technology, 2628 CD Delft, The Netherlands.

Published: March 2024

The technological landscape for industrial processes handling asphaltene is evolving at a rapid pace due to the increase in the extraction of heavy crude oil. The main underlying challenges in this regard are the flow assurance, the recovery of the spent solvent, and the sophisticated extractor setup required to develop the process to an industrial scale. The number of studies focused on the handling of the asphaltene at the atomic and molecular scales is growing enormously in order to identify new sustainable solvents for the effective extraction of asphaltene from heavy crude oil or oil-bearing sands. This Perspective focuses on the importance of density functional theory and molecular dynamics simulations to explore the broader range of asphaltene inhibitors, e.g., nanoparticles, ionic liquids, and deep eutectic solvents, to prevent asphaltene precipitation. We provide a concise overview of the major accomplishments, analyze the aspects that require attention, and highlight the path-breaking studies having a significant impact on the process of chemical enhanced oil recovery from heavy crude oil reservoirs primarily based on atomistic and molecular simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0190779DOI Listing

Publication Analysis

Top Keywords

heavy crude
12
crude oil
12
prevent asphaltene
8
atomistic molecular
8
molecular simulations
8
handling asphaltene
8
asphaltene
6
effectiveness inhibitors
4
inhibitors prevent
4
asphaltene aggregation
4

Similar Publications

Studies on the nutritional strength of various hyacinth bean varieties for their potential utilization as promising legume.

J Food Sci Technol

January 2025

Grain Science and Technology Division, Defence Food Research Laboratory, Mysore, Karnataka 570011 India.

This study aimed to compare thirteen different varieties of hyacinth beans analyzedfor their nutritional and antinutritional constituents. The study classified HA-3, HA-4, and Kadale Avare as Lignosus varieties, while the remaining varieties Arka, Pusa, CO, and NS, were classified as Typicus. The protein content ranged from 19.

View Article and Find Full Text PDF

The Compendium of Materia Medica highlights the therapeutic properties of (). In this study, the species and content of volatile components, inorganic elements, and amino acids were measured, and the activity of crude extracts of ethanol and water was studied. GC-MS analysis revealed 37-53 components across different life stages, excluding excessive heavy metals and containing essential trace elements.

View Article and Find Full Text PDF

Taxonomic Identification and Nutritional Analysis of in Zhanjiang.

Mar Drugs

December 2024

The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523326, China.

To evaluate the nutritional value and development potential of in the marine environment of Naozhou Island, Zhanjiang, this study conducted species classification and identification, followed by an analysis of key nutritional components. The combination of morphological and molecular results confirmed the identification of the collected samples as . Further analysis showed that in Zhanjiang had a moisture content of 74.

View Article and Find Full Text PDF

Background: The prevalence of hypertension is high in Uganda, which places a significant burden on an already strained healthcare system. The behavioural risk factors, such as unhealthy diet, tobacco use, physical inactivity, and heavy drinking, contribute to hypertension development and complications. This study explored the associations of combined tobacco smoking and heavy alcohol consumption with existing hypertension in a community-based cross-sectional study conducted in two rural districts of Uganda.

View Article and Find Full Text PDF

A Comprehensive Assessment of the Marginal Abatement Costs of CO of Co-Optima Multi-Mode Vehicles.

Energy Fuels

January 2025

Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.

The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!