3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF) is a novel energetic material with an excellent performance and has attracted considerable attention. Motivated by recent theories and experiments, we had carried out experimental and theoretical studies on the high-pressure responses of vibrational characteristics, in conjunction with structural and electronic characteristics. It is found that all observed infrared spectra peaks seem to shift towards higher frequencies. And the peaks attributed to N-O (coordinated oxygen atom) stretching vibrations become broader due to the decrease of lattice constants and the free region of DNTF crystals with the increase of pressure, where the -direction is more sensitive to pressure. In addition, the non-covalent interaction between adjacent DNTF molecules in the same layer changes from the van der Waals interaction to the steric effect with the increase of pressure, and that between layers also changes from the van der Waals interaction to the π-π stacking interaction. More importantly, these results highlight that the increase of pressure may lead to the stability decrease and impact the sensitivity increase of DNTF. This study can deepen the understanding of the energetic material DNTF under high pressure and is of great significance for blasting and detonation applications of DNTF.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04429gDOI Listing

Publication Analysis

Top Keywords

increase pressure
12
infrared spectra
8
dntf high
8
high pressure
8
experimental theoretical
8
theoretical studies
8
energetic material
8
changes van
8
van der
8
der waals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!