The processability and sustainability of proton conductors are two important indicators of their application. Here, MIL-91(Al) with an intrinsic proton conduction framework originating from protonated phosphonate groups was cross-linked with poly(vinyl alcohol) (PVA) to obtain MIL-91(Al) aerogel through freeze-drying. This simple and inexpensive strategy not only facilitated the processing of MIL-91(Al) powder but also resulted in a molded MIL-91(Al) aerogel having a high proton conductivity of 1.02 × 10 S cm at 70 °C and 100% relative humidity. Furthermore, MIL-91(Al) aerogel was recyclable and reusable, in line with the principles of environmental protection and sustainability. To the best of our knowledge, this is the first example of using a metal-organic framework aerogel as a proton conductor, which may develop a new model system in this field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c00388 | DOI Listing |
J Colloid Interface Sci
December 2024
Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:
Adv Mater
December 2024
Department of Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, Ontario, M5S 3G8, Canada.
MXene has garnered growing interest in the field of electrochemistry, thanks to its unique electrical and surface characteristics. Nonetheless, significant challenges persist in realizing its full potential in chemoresistive sensing applications. In this study, a novel unidirectional freeze-casting approach for fabricating a Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-facilitated vertically aligned MXene-based aerogel with enhanced chemoresistive sensing properties was introduced.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
As an essential material for manufacturing lithium batteries, the demand of lithium is increasing, which means novel extracting method from various lithium-containing solutions is necessary. Spiropyran molecules undergo a photoisomerization reaction under light, transitioning from a closed-ring form (colorless) to an open-ring form (colored), generating multiple coordination sites to form coordination bonds with metal ions. In this paper, a polyacrylamide/carboxymethyl chitosan composite aerogel grafted with photoresponsive spiropyragroups (FeO/CNTs@PAM/CS-SP), used for extracting lithium from solutions, was prepared by dual cross-linking and vacuum freeze-drying.
View Article and Find Full Text PDFResearch (Wash D C)
December 2024
Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 35201, P. R. China.
MXenes, a class of 2-dimensional transition metal carbides and nitrides, have garnered important attention due to their remarkable electrical and thermal conductivity, high photothermal conversion efficiency, and multifunctionality. This review explores the potential of MXene materials in various thermal applications, including thermal energy storage, heat dissipation in electronic devices, and the mitigation of electromagnetic interference in wearable technologies. Recent advancements in MXene composites, such as MXene/bacterial cellulose aerogel films and MXene/polymer composites, have demonstrated enhanced performance in phase change thermal storage and electromagnetic interference shielding, underscoring their versatility and effectiveness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Advanced Materials for Facility Agriculture, Ministry of Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
Given the limitations of single-function electromagnetic wave-absorbing materials (EWAMs) in meeting the evolving demands of complex usage scenarios, there is a growing need for structure-function integrated composites that offer a combination of microwave absorption, human monitoring, and thermal insulation. This study successfully synthesized two-dimensional (2D) TiCT MXene via selective etching of Al from the TiAlC MAX phase. By introducing MXene into a composite of hydroxylated CoFeO nanoparticles (-CFO NPs) and bacterial nanocellulose (BNC) to modulate the electromagnetic performance of the EWAMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!