This comprehensive review delves into the intricate dynamics of cerebral perfusion and blood pressure management within the context of neurosurgical and endovascular aneurysm interventions. The review highlights the critical role of maintaining a delicate hemodynamic balance, given the brain's susceptibility to fluctuations in blood pressure. Emphasizing the regulatory mechanisms of cerebral perfusion, particularly autoregulation, the study advocates for a nuanced and personalized approach to blood pressure control. Key findings underscore the significance of adhering to tailored blood pressure targets to mitigate the risks of ischemic and hemorrhagic complications in both neurosurgical and endovascular procedures. The implications for clinical practice are profound, calling for heightened awareness and precision in hemodynamic management. The review concludes with recommendations for future research, urging exploration into optimal blood pressure targets, advancements in monitoring technologies, investigations into long-term outcomes, and the development of personalized approaches. By consolidating current knowledge and charting a path for future investigations, this review aims to contribute to the continual enhancement of patient outcomes in the dynamic field of neurovascular interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917124PMC
http://dx.doi.org/10.7759/cureus.53635DOI Listing

Publication Analysis

Top Keywords

blood pressure
24
cerebral perfusion
12
neurosurgical endovascular
12
comprehensive review
8
pressure management
8
endovascular aneurysm
8
aneurysm interventions
8
pressure targets
8
blood
6
pressure
6

Similar Publications

Subclavian Ansae Stimulation on Cardiac Hemodynamics and Electrophysiology in Atrial Fibrillation: A Target for Sympathetic Neuromodulation.

JACC Clin Electrophysiol

December 2024

St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:

Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.

Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.

View Article and Find Full Text PDF

Effects of adjuvant hyperbaric oxygen therapy and real-time fluorescent imaging on deep sternal wound infection: a retrospective study.

J Wound Care

January 2025

Division of Plastic Surgery, Integrated Burn & Wound Care Center, Department of Surgery, Shuang-Ho Hospital, New Taipei City, Taiwan.

Objective: Deep sternal wound infection (DSWI) is a rare but devastating complication that is estimated to occur in 1-2% of patients after median sternotomy. Current standard of care (SoC) comprises antibiotics, debridement and negative pressure wound therapy (NPWT). Hyperbaric oxygen therapy (HBOT) appears to be an effective adjuvant therapy for osteomyelitis.

View Article and Find Full Text PDF

Objective: Limited information is available regarding the associations between upper extremity function, activities of daily living (ADLs), and functional capacity in patients with heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate the associations between upper extremity function, ADLs, and functional capacity in patients with HFrEF.

Methods: This cross-sectional study included 31 patients with HFrEF.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

The management of multiple intracranial aneurysms presents significant clinical challenges, particularly when complicated by underlying conditions such as cerebral atherosclerosis. This case report highlights the successful treatment of a 66-year-old female diagnosed with three intracranial aneurysms located in the right middle cerebral artery (MCA), pericallosal artery, and M2 segment. The patient also had a history of systemic atherosclerosis and right-sided breast cancer, factors that increased the complexity of surgical intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!