AI Article Synopsis

  • Ambient stable solution-processed n-channel OFETs are crucial for developing cost-effective organic electronics, emphasizing the importance of molecular design for active materials.
  • Researchers explored substituting end-groups in core-substituted naphthalenediimide derivatives, finding that fluorinated end groups significantly enhanced ambient stability of the transistors, particularly under high humidity conditions.
  • The study reveals that incorporating hydrophobic features and achieving deep LUMO levels in the design of active materials are key to improving their stability in humid environments, which is vital for practical applications.

Article Abstract

Ambient stable solution processed n-channel organic field effect transistors (OFETs) are essential for next-generation low-cost organic electronic devices. Several molecular features, such as suitable orbital energy levels, easy synthetic steps, , must be considered while designing efficient active layer materials. Here, we report a case of improved ambient stability of solution-processed n-type OFETs upon suitable end-groups substitution of the active layer materials. A pair of core-substituted napthalenediimide (NDIFCN and EHNDICN) derivatives with alkyl and perfluorinated end groups are considered. The transistor devices made out of these two derivatives exhibited largely different ambient stability behavior. The superior device stability (more than 25 days under ambient conditions) of one of the derivatives (NDIFCN) was ascribed to the presence of fluorinated end groups that function as hydrophobic guard units inhibiting moisture infiltration into the active layer, thereby achieving ambient stability under humid conditions (>65% relative atmospheric humidity). Molecular level optical and electrochemical properties, thermal stability, and the solution-processed (spin coat and drop cast active layers) device characteristics are described in detail. Our findings highlight the requirement of hydrophobic end groups or sidechains for ambient stability of active layer materials, along with deep LUMO levels for ambient stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915716PMC
http://dx.doi.org/10.1039/d4ra01499eDOI Listing

Publication Analysis

Top Keywords

ambient stability
24
active layer
16
layer materials
12
ambient
9
ambient stable
8
organic field
8
field transistors
8
stability
8
stability solution-processed
8
active
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!