Heat-shock proteins (HSPs), also known as stress proteins, are ubiquitously present in all forms of life. They play pivotal roles in protein folding and unfolding, the formation of multiprotein complexes, the transportation and sorting of proteins into their designated subcellular compartments, the regulation of the cell cycle, and signalling processes. These HSPs encompass HSP27, HSP40, HSP70, HSP60, and HSP90, each contributing to various cellular functions. In the context of cancer, HSPs exert influence by either inhibiting or activating diverse signalling pathways, thereby impacting growth, differentiation, and cell division. This article offers an extensive exploration of the functions of HSPs within the realms of pharmacology and cancer biology. HSPs are believed to play substantial roles in the mechanisms underlying the initiation and progression of cancer. They hold promise as valuable clinical markers for cancer diagnosis, potential targets for therapeutic interventions, and indicators of disease progression. In times of cellular stress, HSPs function as molecular chaperones, safeguarding the structural and functional integrity of proteins and aiding in their proper folding. Moreover, HSPs play a crucial role in cancer growth, by regulating processes such as angiogenesis, cell proliferation, migration, invasion, and metastasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10912419 | PMC |
http://dx.doi.org/10.1007/s13205-024-03951-6 | DOI Listing |
Life Metab
October 2024
Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
Obesity is considered an epidemic often accompanied by insulin resistance (IR). Heat treatment (HT) has been shown to prevent high-fat diet-induced IR in skeletal muscle, but the underlying mechanisms are poorly understood. In this study, we discovered that high temperature alleviated the hallmarks of obesity by promoting glycogen synthesis and lowering blood glucose levels in skeletal muscle tissue (SMT).
View Article and Find Full Text PDFCurr Protein Pept Sci
January 2025
Department of Pharmacy, Panipat Institute of Engineering and Technology, India.
The three-dimensional structure of proteins, achieved through the folding of the nascent polypeptide chain in vivo, is largely facilitated by molecular chaperones, which are crucial for determining protein functionality. In addition to aiding in the folding process, chaperones target misfolded proteins for degradation, acting as a quality control system within the cell. Defective protein folding has been implicated in a wide range of clinical conditions, including neurodegenerative and metabolic disorders.
View Article and Find Full Text PDFJ Clin Exp Neuropsychol
January 2025
Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
Introduction: Sensory hypersensitivity (SHS) refers to an increased sensitivity to sensory stimuli, often leading to sensory overload and adversely affecting daily functioning and well-being. This study examined the effects of three situational triggers - noise, time pressure, and cognitive load - on task performance, sensory overload, and fatigue. Additionally, we sought to explore the associations between these effects and SHS, while accounting for other influencing factors such as personality, coping mechanisms, and anxiety.
View Article and Find Full Text PDFPeerJ
January 2025
Medical section, Jiang Ling County People's Hospital, Hubei, Jiangling County, Jingzhou City, China.
Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).
Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India; Sastrajeevan Integrative Project, Centre for Integrative Stress and Ease-cRISE, Gregorian College of Advanced Studies, Sreekariyam, Thiruvananthapuram 695017, Kerala, India. Electronic address:
The cardiac actin cytoskeleton has a dynamic pattern of polymerisation. It is uncertain how far actin destabilisation impacts mitochondrial energetics and biogenesis, cell signal status, and structural entities in cardiomyocytes, particularly in hypoxic conditions. We thus tested the in vitro action of cytochalasin D (Cyt D), an inhibitor of actin polymerisation, in hypoxic ventricular explants to elucidate the role of the actin in mitochondrial energetics and biogenesis, cell signals and actin/tubulin/hsps/MMPs dynamics in hypoxic air-breathing fish hearts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!