Platelets play a pivotal role in many physiological and pathological processes, with their special targeting/adhering properties towards infarcted myocardium, injured or dysfunctional endothelium, and growing thrombus. Leveraging the site-targeting/adhering property, a variety of platelet-inspired targeting delivery(PITD)designs have been developed, the majority of which are reached by hitchhiking live platelets, cloaking nanoparticles with platelet membranes and mimicking platelet functions. With PITD, drugs or regenerative cells can directly reach targeted sites with minimized systematical distribution thus being of great clinical benefits. Coronary heart disease (CHD) is a major health burden worldwide. Plenty of PITD designs have shown promising outcomes for the treatment of CHD in preclinical models, especially in thrombolysis and post-percutaneous coronary intervention (post-PCI) anti-restenosis. Besides, PITD applications in cardiac protection and atherosclerotic plaque imaging are also under investigation. What's more, the potential benefits of PITD in the field of cell-based therapy are also attracting growing attention since it may resolve the problem of low arriving and retention efficiency, which are also particularly discussed in this review. In brief, our focus is putting on PITD strategies designed for the treatment of CHD, which hopefully can facilitate further optimization of this direction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915553 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e27166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!